766
Views
56
CrossRef citations to date
0
Altmetric
Original Articles

Polyphenolic Content and Physiological Activities of Chinese Hawthorn Extracts

, , , &
Pages 2948-2956 | Received 27 Jun 2006, Accepted 13 Sep 2006, Published online: 22 May 2014

  • 1) Chang, W.-T., Dao, J., and Shao, Z.-H., Hawthorn: potential roles in cardiovascular disease. Am. J. Chin. Med., 33, 1–10 (2005).
  • 2) Chang, Q., Zuo, Z., Harrison, F., and Chow, M.-S., Hawthorn. J. Clin. Pharmacol., 42, 605–612 (2002).
  • 3) Zhao, H.-C., and Tian, B.-F., “China Fruit-Plant Monograph, Hawthorn Flora” (in Chinese), Zhongguo Lin Ye Press, Beijing, p. 14 (1996).
  • 4) Chu, C.-Y., Lee, M.-J., Liao, C.-L., Lin, W.-L., Yin, Y.-F., and Tseng, T.-H., Inhibitory effect of hot-water extract from dried fruit of Crataegus pinnatifida on low-density lipoprotein (LDL) oxidation in cell and cell-free systems. J. Agric. Food Chem., 51, 7583–7588 (2003).
  • 5) Zhang, Z., Chang, Q., Zhu, M., Huang, Y., Ho, W. K. K., and Chen, Z.-Y., Characterization of antioxidants present in hawthorn fruits. J. Nutr. Biochem., 12, 144–152 (2001).
  • 6) Kao, E.-S., Wang, C.-J., Lin, W.-L., Yin, Y.-F., Wang, C.-P., and Tseng, T.-H., Anti-inflammatory potential of flavonoid contents from dried fruit of Crataegus pinnatifida in vitro and in vivo. J. Agric. Food Chem., 53, 430–436 (2005).
  • 7) Zhang, Z., Ho, W.-K., Huang, Y., James, A. E., Lam, L. W., and Chen, Z.-Y., Hawthorn fruit is hypolipidemic in rabbits fed a high cholesterol diet. J. Nutr., 132, 5–10 (2002).
  • 8) Zhang, D.-L., Zhang, Y.-T., Yin, J.-J., and Zhao, B.-L., Oral administration of Crataegus flavonoids protects against ischemia/reperfusion brain damage in gerbils. J. Neurochem., 90, 211–219 (2004).
  • 9) Tu, Z., Han, X., Wang, X., Hou, Y., Shao, B., Wang, X., Zhou, Q., and Fan, Q., Protective effects of CVPM on vascular endothelium in rats fed cholesterol diet. Clin. Chem. Acta, 333, 85–90 (2003).
  • 10) Chen, Z.-Y., Zhang, Z.-S., Kwan, K.-Y., Zhu, M., Ho, W., and Huang, Y., Endothelium-dependent relaxation induced by hawthorn extract in rat mesenteric artery. Life Sci., 63, 1983–1991 (1998).
  • 11) Cui, T., Li, J.-Z., Kayahara, H., Ma, L., Wu, L.-X., and Nakanura, K., Quantification of the polyphenols and triterpene acids in Chinese hawthorn fruit by high-performance liquid chromatography. J. Agric. Food Chem., 54, 4574–4581 (2006).
  • 12) China Pharmacopoeia Committee, “Chinese Pharmacopoeia (I),” Hua Xue Gong Ye Press, Beijing, p. 23 (2000).
  • 13) Thompson, R. S., Jacques, D., Haslam, E., and Tanner, R. J. N., Plant proanthocyanidins. I. Introduction: the isolation, structure, and distribution in nature of plant procyanidins. J. Chem. Soc. Perkin 1, 1387–1399 (1972).
  • 14) Cui, T., Kayahara, H., and Liu, W.-M., Extraction of active components from haws. Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 1305749A (2001).
  • 15) Ricardo da Silva, J. M., Rigaud, J., Cheynier, V., Cheminat, A., and Moutounet, M., Procyanidin dimers and trimers from grape seeds. Phytochemistry, 30, 1259–1264 (1991).
  • 16) Svedstrom, U., Vuorela, H., Kostiainen, R., Tuominen, J., Kokkonen, J., Rauha, J. P., Laakso, I., and Hiltunen, R., Isolation and identification of oligomeric procyanidins from Crataegus leaves and flowers. Phytochemistry, 60, 821–825 (2002).
  • 17) McCord, J. M., and Fridovich, I., Superoxide dismutase. J. Biol. Chem., 244, 6049–6055 (1969).
  • 18) Tian, Y.-L., Chen, G.-H., and Cui, T., Determination of Chinese traditional medicine activity eliminating superoxide anion radical by kinetics spectrophotometry. Guang Pu Xue Yu Guang Pu Fen Xi, 25, 617–619 (2005).
  • 19) Kobayashi, Y., Kayahara, H., Tadasa, K., Nakamura, T., and Tanaka, H., Synthesis of amino acid derivatives of kojic acid and their tyrosinase inhibitory activity. Biosci. Biotechnol. Biochem., 59, 1745–1746 (1995).
  • 20) Komoda, T., Morimitsu, Y., Hirota, H., and Hirota, A., USF-19A, a new lipoxygenase inhibitor from Streptomyces sp. Biosci. Biotechnol. Biochem., 59, 924–926 (1995).
  • 21) Yoshimoto, T., Walter, R., and Tsuru, D., Proline-specific endopeptidase from flavobacterium: purification and properties. J. Biol. Chem., 255, 4786–4792 (1980).
  • 22) Bieth, J., Spiess, B., and Wermuth, C. G., The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem. Med., 11, 350–357 (1974).
  • 23) Takai, S., Jin, D., Sakaguchi, M., and Miyazaki, M., Significant target organs for hypertension and cardiac hypertrophy by angiotensin-converting enzyme inhibitors. Hypertens. Res., 27, 213–219 (2004).
  • 24) Vierling, W., Brand, N., Gaedcke, F., Sensch, K. H., Schneider, E., and Scholz, M., Investigation of the pharmaceutical and pharmacological equivalence of different Hawthorn extracts. Phytomedicine, 10, 8–16 (2003).
  • 25) Yang, B., Li, H., Zhao, Y.-X., and Li, M.-L., Changes in level of organic acids in Fructus crataegi after processing. Zhongguo Zhong Yao Za Zhi (in Chinese), 29, 1057–1060 (2004).
  • 26) Dong, Y.-J., Dai, B.-H., Zhang, N.-X., and Zhang, M.-L., A study of flavonoids in hawthorn leaves. Shenyang Yaoke Daxue Xuebao (in Chinese), 13, 31–33, 72 (1996).
  • 27) Santos-Buelga, C., and Scalbert, A., Procyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric., 80, 1094–1117 (2000).
  • 28) Natsume, M., Osakabe, N., Yamagishi, M., Takizawa, T., Nakamura, T., Miyatake, H., Hatano, T., and Yoshida, T., Analysis of polyphenols in cacao liquor, cocoa and chocolate by normal-phase and reversed phase HPLC. Biosci. Biotechnol. Biochem., 64, 2581–2587 (2000).
  • 29) Svedstrom, U., Vuorela, H., Kostiainen, R., Huovinen, K., Laakso, I., and Hiltunen, R., High-performance liquid chromatographic determination of oligomeric procyanidins from dimers up to the hexamer in hawthorn. J. Chromatogr. A, 968, 53–60 (2002).
  • 30) Degenring, F. H., Suter, A., Weber, M., and Saller, R., A randomised double blind placebo controlled clinical trial of a standardised extract of fresh Crataegus berries (Crataegisan) in the treatment of patients with congestive heart failure NYHA II. Phytomedicine, 10, 363–369 (2003).
  • 31) Bahorun, T., Trotin, F., Pommery, J., Vasseur, J., and Pinkas, M., Antioxidant activities of Crataegus monogyna extracts. Planta Med., 60, 323–328 (1994).
  • 32) Middleton, E., Kandaswami, C., and Theoharides, T. C., The effect of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52, 673–751 (2000).
  • 33) Shi, J., Yu, J., Pohorly, J. E., and Kakuda, Y., Polyphenolics in grape seeds: biochemistry and functionality. J. Med. Food, 6, 291–299 (2003).
  • 34) Quettier-Deleu, C., Voiselle, G., Fruchart, J. C., Duriez, P., Teissier, E., Bailleul, F., Vasseur, J., and Trotin, F., Hawthorn extracts inhibit LDL oxidation. Pharmazie, 58, 577–581 (2003).
  • 35) Carini, M., Aldini, G., Bombardelli, E., Morazzoni, P., and Maffei-Facino, R., UVB-induced hemolysis of rat erythrocytes: protective effect of procyanidins from grape seeds. Life Sci., 67, 1799–1814 (2000).
  • 36) Castillo, J., Benavente-Garcia, O., Del Bano, M. J., Lorente, J., Alcaraz, M., and Dato, M. J., Radioprotective effects against chromosomal damage induced in human lymphocytes by gamma rays as a function of polymerization grade of grape seed extracts. J. Med. Food, 4, 117–123 (2001).
  • 37) Satoh, K., Anzai, S., and Sakagami, H., Enhancement of radical intensity and cytotoxic activity of ascorbate by Crataegus cuneata Sieb et. Zucc. Extracts. Anticancer Res., 18, 2749–2753 (1998).
  • 38) Stefania, B., Emanuela, C., and Mauro, P., Review: innovative technology, chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res., 16, 101–110 (2003).
  • 39) Lewis, R. A., and Austen, K. F., The biologically active leukotrienes: biosynthesis, metabolism, receptors, functions and pharmacology. J. Clin. Invest., 73, 889–897 (1984).
  • 40) Toide, K., Shinoda, M., and Miyazaki, A., A novel prolyl endopeptidase inhibitor, JTP-4819: its behavioral and neurochemical properties for the treatment of Alzheimer’s disease. Rev. Neurosci., 9, 17–29 (1998).
  • 41) Bellemère, G., Morain, P., Vaudry, H., and Jégou, S., Effect of S 17092, a novel prolyl endopeptidase inhibitor, on substance P and α-melanocyte-stimulating hormone breakdown in the rat brain. J. Neurochem., 84, 919–929 (2003).
  • 42) Fook, J. M. S. L. L., Macedo, L. L. P., Moura, G. E. D. D., Teixeira, F. M., Oliveira, A. S., Queiroz, A. F. S., and Sales, M. P., A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase. Life Sci., 76, 2881–2891 (2005).
  • 43) Walker, A. F., Marakis, G., Morris, A. P., and Robinson, P. A., Promising hypotensive effect of hawthorn extract: a randomized double-blind pilot study of mild, essential hypertension. Phytother. Res., 16, 48–54 (2002).
  • 44) Lacaille-Dubois, M. A., Franck, U., and Wagner, H., Search for potential angiotensin converting enzyme (ACE)-inhibitors from plants. Phytomedicine, 8, 47–52 (2001).
  • 45) Murad, F., Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci. Rep., 24, 452–474 (2004).
  • 46) Gryglewski, R. J., Palmer, R. M., and Moncada, S., Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature, 320, 454–456 (1986).
  • 47) Kim, S.-H., Kang, K.-W., Kim, K.-W., and Kim, N. D., Procyanidins in crataegus extract evoke endothelium-dependent vasorelaxation in rat aorta. Life Sci., 67, 121–131 (2000).
  • 48) Corder, R., Warburton, R. C., Khan, N. Q., Brown, R. E., Wood, E. G., and Lees, D. M., The procyanidin-induced pseudo laminar shear stress response: a new concept for the reversal of endothelial dysfunction. Clin. Sci., 107, 513–517 (2004).
  • 49) Deprez, S., Mila, I., Huneau, J. F., Tome, D., and Scalbert, A., Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid. Redox Signaling, 3, 957–967 (2001).
  • 50) Nakamura, Y., and Tonogai, Y., Metabolism of grape seed polyphenol in the rat. J. Agric. Food Chem., 51, 7215–7225 (2003).
  • 51) Baba, S., Osakabe, N., Natsume, M., Muto, Y., Takizawa, T., and Terao, J., In vivo comparison of the bioavailability of (+)-catechin, (−)-epicatechin and their mixture in orally administered rats. J. Nutr., 131, 2885–2891 (2001).
  • 52) Holt, R. R., Lazarus, S. A., Sullards, M. C., Zhu, Q.-Y., Schramm, D. D., Hammerstone, J. F., Fraga, C. G., Schmitz, H. H., and Keen, C., Procyanidin B2 [epicatechin-(4β-8) epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr., 76, 798–804 (2002).
  • 53) Sano, A., Yamakoshi, J., Tokutake, S., Tobe, K., Kubota, Y., and Kikuchi, M., Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci. Biotechnol. Biochem., 67, 1140–1143 (2003).
  • 54) Spencer, J. P., Schroeter, H., Shenoy, B., Srai, S. K., Debnam, E., and Rice-Evans, C., Epicatechin is the primary bioavailable form of the procyanidin dimers B2 and B5 after transfer across the small intestine. Biochem. Biophys. Res. Commun., 285, 588–593 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.