258
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Identification of a Functional 2-keto-myo-Inositol Dehydratase Gene of Sinorhizobium fredii USDA191 Required for myo-Inositol Utilization

, , , , , , & show all
Pages 2957-2964 | Received 27 Jun 2006, Accepted 21 Aug 2006, Published online: 22 May 2014

  • 1) Yoshida, K., Aoyama, D., Ishio, I., Shibayama, T., and Fujita, Y., Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J. Bacteriol., 179, 4591–4598 (1997).
  • 2) Vidal-Leiria, M., and van Uden, N., Inositol dehydrogenase from the yeast Cryptococcus melibiosum. Biochim. Biophys. Acta, 293, 295–303 (1973).
  • 3) Berman, T., and Magasanik, B., The pathway of myo-inositol degradation in Aerobacter aerogenes: dehydrogenation and dehydration. J. Biol. Chem., 241, 800–806 (1966).
  • 4) Berman, T., and Magasanik, B., The pathway of myo-inositol degradation in Aerobacter aerogenes: ring scission. J. Biol. Chem., 241, 807–813 (1966).
  • 5) Poole, P. S., Blyth, A., Reid, C. J., and Walters, K., myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology, 140, 2787–2795 (1994).
  • 6) Galbraith, M. P., Feng, S. F., Borneman, J., Triplett, E. W., de Bruijn, F. J., and Rossbach, S., A functional myo-inositol catabolic pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology, 144, 2915–2924 (1998).
  • 7) Jiang, G., Krishnan, A. H., Kim, Y.-M., Wacek, T. J., and Krishnan, H. B., A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J. Bacteriol., 183, 2595–2604 (2001).
  • 8) Anderson, W. A., and Magasanik, B., The pathway of myo-inositol degradation in Aerobacter aerogenes: identification of the intermediate 2-deoxy-5-keto-D-gluconic acid. J. Biol. Chem., 246, 5653–5661 (1971).
  • 9) Anderson, W. A., and Magasanik, B., The pathway of myo-inositol degradation in Aerobacter aerogenes: conversion of 2-deoxy-5-keto-D-gluconic acid to glycolytic intermediates. J. Biol. Chem., 246, 5662–5675 (1971).
  • 10) Yoshida, K., Yamamoto, Y., Omae, K., Yamamoto, M., and Fujita, Y., Identification of two myo-inositol transporter genes of Bacillus subtilis. J. Bacteriol., 184, 983–991 (2002).
  • 11) Fujita, Y., Shindo, K., Miwa, Y., and Yoshida, K., Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli. Gene, 108, 121–125 (1991).
  • 12) Ramaley, R., Fujita, Y., and Freese, E., Purification and properties of Bacillus subtilis inositol dehydrogenase. J. Biol. Chem., 254, 7684–7690 (1979).
  • 13) Yoshida, K., Yamaguchi, M., Ikeda, H., Omae, K., Tsurusaki, K., and Fujita, Y., The fifth gene of the iol operon of Bacillus subtilis, iolE, encodes 2-keto-myo-inositol dehydratase. Microbiology, 150, 571–580 (2004).
  • 14) Yoshida, K., Shibayama, T., Aoyama, D., and Fujita, Y., Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. J. Mol. Biol., 285, 917–929 (1999).
  • 15) Bahar, M., de Majnik, J., Wexler, M., Fry, J., Poole, P. S., and Murphy, P. J., A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway. Mol. Plant Microbe Interact., 11, 1057–1068 (1998).
  • 16) Vincent, J. M., “A Manual for the Practical Study of Root-Nodule Bacteria,” Blackwell Scientific Publications, Oxford (1970).
  • 17) Brown, C. M., and Dilworth, M. J., Ammonia assimilation by rhizobium cultures and bacteroids. J. Gen. Microbiol., 86, 39–48 (1975).
  • 18) Fujita, Y., and Freese, E., Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase. J. Bacteriol., 145, 760–767 (1981).
  • 19) Sambrook, J., and Russell, D. W., “Molecular Cloning: A Laboratory Manual” 3rd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (2001).
  • 20) Galibert, F., Finan, T. M., Long, S. R., Puhler, A., Abola, P., Ampe, F., Barloy-Hubler, F., Barnett, M. J., Becker, A., Boistard, P., Bothe, G., Boutry, M., Bowser, L., Buhrmester, J., Cadieu, E., Capela, D., Chain, P., Cowie, A., Davis, R. W., Dreano, S., Federspiel, N. A., Fisher, R. F., Gloux, S., Godrie, T., Goffeau, A., Golding, B., Gouzy, J., Gurjal, M., Hernandez-Lucas, I., Hong, A., Huizar, L., Hyman, R. W., Jones, T., Kahn, D., Kahn, M. L., Kalman, S., Keating, D. H., Kiss, E., Komp, C., Lelaure, V., Masuy, D., Palm, C., Peck, M. C., Pohl, T. M., Portetelle, D., Purnelle, B., Ramsperger, U., Surzycki, R., Thebault, P., Vandenbol, M., Vorholter, F. J., Weidner, S., Wells, D. H., Wong, K., Yeh, K. C., and Batut, J., The composite genome of the legume symbiont Sinorhizobium meliloti. Science, 293, 668–672 (2001).
  • 21) Friedman, A. M., Long, S. R., Brown, S. E., Buikema, W. J., and Ausubel, F. M., Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene, 18, 289–296 (1982).
  • 22) Quandt, J., and Hynes, M. F., Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene, 127, 15–21 (1993).
  • 23) Figurski, D. H., and Helinski, D. R., Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA, 76, 1648–1652 (1979).
  • 24) Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M., and Fujita, Y., Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res., 28, 1206–1210 (2000).
  • 25) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 26) Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402 (1997).
  • 27) Rossbach, S., Kulpa, D. A., Rossbach, U., and de Bruijn, F. J., Molecular and genetic characterization of rhizopine catabolism (mocABCR) genes of Rhizobium meliloti L5-30. Mol. Gen. Genet., 245, 11–24 (1994).
  • 28) Fry, J., Wood, M., and Poole, P. S., Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol. Plant Microbe Interact., 14, 1016–1025 (2001).
  • 29) Oresnik, I. J., Pacarynuk, L. A., O’Brien, S. A. P., Yost, C. K., and Hynes, M. F., Plasmid-encoded catabolic genes in Rhizobium leguminosaarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol. Plant Microbe Interact., 11, 1175–1185 (1998).
  • 30) Morinaga, T., Yamaguchi, M., Makino, Y., Nanamiya, H., Takahashi, K., Yoshikawa, H., Kawamura, F., Ashida, H., and Yoshida, K., Functional myo-inositol catabolic genes of Bacillus subtilis natto are involved in depletion of pinitol in natto (fermented soybean). Biosci. Biotechnol. Biochem., 70, 1913–1920 (2006).
  • 31) Yoshida, K., Yamaguchi, M., Morinaga, T., Ikeuchi, M., Kinehara, M., and Ashida, H., Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl. Environ. Microbiol., 72, 1310–1315 (2006).
  • 32) Keyser, H. H., Bohool, B. B., Hu, T. S., and Weber, D. F., Fast-growing rhizobia isolated from root nodules of soybean. Science, 215, 1631–1632 (1982).
  • 33) Yanisch-Perron, Vieira, C. J., and Messing, J., Improved M13 phage cloning vectors and host strain: nucleotide sequences of M13mp18 and pUC19 vectors. Gene, 33, 103–119 (1985).
  • 34) Thompson, J. D., Higgins, D. G., and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.