471
Views
56
CrossRef citations to date
0
Altmetric
Original Articles

Physiological Roles of Calcineurin in Saccharomyces cerevisiae with Special Emphasis on Its Roles in G2/M Cell-Cycle Regulation

&
Pages 633-645 | Published online: 22 May 2014

  • 1) Aramburu, J., Rao, A., and Klee, C. B., Calcineurin: from structure to function. Curr. Top. Cell. Regul., 36, 237–295 (2000).
  • 2) Cyert, M. S., Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae. Annu. Rev. Genet., 35, 647–672 (2001).
  • 3) Cyert, M. S., Kunisawa, R., Kaim, D., and Thorner, J., Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc. Natl. Acad. Sci. USA, 88, 7376–7380 (1991).
  • 4) Liu, Y., Ishii, S., Tokai, M., Tsutsumi, H., Ohki, O., Akada, R., Tsuchiya, E., Tanaka, K., Fukui, S., and Miyakawa, T., The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding calmodulin-binding proteins homologous with the catalytic subunit of mammalian protein phosphatase 2B. Mol. Gen. Genet., 227, 52–59 (1991).
  • 5) Kuno, T., Tanaka, H., Mukai, H., Chang, C. D., Hiraga, K., Miyakawa, T., and Tanaka, C., cDNA cloning of a calcineurin B homolog in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun., 180, 1159–1163 (1991).
  • 6) Cyert, M. S., and Thorner, J., Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatase is required for adaptation to pheromone. Mol. Cell. Biol., 12, 3460–3469 (1992).
  • 7) Nakamura, T., Tsutsumi, H., Mukai, H., Kuno, T., and Miyakawa, T., Ca2+/calmodulin-activated protein phosphatase (PP2B) of Saccharomyces cerevisiae: the activity is not essential for growth. FEBS Lett., 309, 103–106 (1992).
  • 8) Nakamura, T., Liu, Y., Hirata, D., Namba, H., Harada, S., Hirokawa, T., and Miyakawa, T., Protein phosphatase 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high stress conditions. EMBO J., 12, 4063–4071 (1993).
  • 9) Mendoza, I., Rubio, F., Rodriguez-Navaro, A., and Pardo, J. M., The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem., 269, 8792–8796 (1994).
  • 10) Breuder, T., Hemenway, C. S., Movva, N. R., Cardenas, M. E., and Heitman, J., Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc. Natl. Acad. Sci. USA, 91, 5372–5376 (1994).
  • 11) Stathopoulos, A. M., and Cyert, M. S., Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev., 11, 3432–3444 (1997).
  • 12) Matheos, D. P., Kingsbury, T. J., Ahsan, U. S., and Cunningham, K. W., Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev., 11, 3445–3458 (1997).
  • 13) Stathopoulos-Geronides, A., Guo, J., and Cyert, M. S., Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev., 13, 798–803 (1999).
  • 14) Yoshimoto, H., Saltsman, K., Gasch, A. P., Li, H. X., Ogawa, N., Botstein, D., Brown, P. O., and Cyert, M., Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J. Biol. Chem., 277, 31079–31088 (2002).
  • 15) Mendoza, I., Quintero, F. J., Bressan, R. A., Hasegawa, P. M., and Pardo, J. M., Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J. Biol. Chem., 271, 23061–23067 (1996).
  • 16) Farcasanu, I. C., Hirata, D., Tsuchiya, E., Nishiyama, F., and Miyakawa, T., Protein phosphatase 2B of Saccharomyces cerevisiae is required for tolerance to manganese, in blocking the entry of ions into the cells. Eur. J. Biochem., 232, 712–717 (1995).
  • 17) Farcasanu, I. C., Ohta, N., Tsuchiya, E., and Miyakawa, T., The fate of Mn2+ ions inside the Saccharomyces cerevisiae cells as revealed by electron paramagnetic resonance. Biosci. Biotechnol. Biochem., 60, 468–471 (1996).
  • 18) Serrano, R., Ruiz, A., Bernal, D., Chambers, J. R., and Ariño, J., The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signaling. Mol. Microbiol., 46, 1319–1333 (2002).
  • 19) Garrett-Engele, P., Moilanen, B., and Cyert, M. S., Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H+-ATPase. Mol. Cell. Biol., 15, 4103–4114 (1995).
  • 20) Rudolph, H. K., Antebi, A., Fink, J., Buckley, C. M., Dorman, T. E., LeVitra, J., Davidow, L. S., Mao, J. I., and Moir, D. T., The yeast secretory pathway is perturbed by mutations in PMR1, a member of the Ca2+ ATPase family. Cell, 58, 133–145 (1989).
  • 21) Hirata, D., Harada, S., Namba, H., and Miyakawa, T., Adaptation to high-salt stress in Saccharomyces cerevisiae is regulated by Ca2+/calmodulin-dependent phosphoprotein phosphatase (calcineurin) and cAMP-dependent protein kinase. Mol. Gen. Genet., 249, 257–264 (1995).
  • 22) Kafadar, K. A., and Cyert, M. S., Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot. Cell, 3, 1147–1153 (2004).
  • 23) Cunningham, K. W., and Fink, G. R., Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol., 16, 2226–2237 (1996).
  • 24) Cunningham, K. W., and Fink, G. R., Calcineurin-dependent growth control in Saccharomyces cerevisiae mutant lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J. Cell Biol., 124, 351–363 (1994).
  • 25) Mazur, P., Morin, N., Baginsky, W., El-Sherbeini, M., Clemas, J. A., Nielsen, J. B., and Foor, F., Differential expression and function of two homologous subunits of yeast 1,3-β-D-glucan synthetase. Mol. Cell. Biol., 15, 5671–5681 (1995).
  • 26) Zhao, C., Jung, U. S., Garrette-Engele, P., Rose, T., Cyert, M. S., and Levin, D. E., Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol. Cell. Biol., 18, 1013–1022 (1998).
  • 27) Nakamura, T., Hirata, D., Tsuchiya, E., and Miyakawa, T., Genetic evidence for the functional redundancy of the calcineurin- and Mpk1-mediated pathways in the regulation of cellular events important for growth in Saccharomyces cerevisiae. Mol. Gen. Genet., 251, 211–219 (1996).
  • 28) Nakamura, T., Ohmoto, T., Hirata, D., Tsuchiya, E., and Miyakawa, T., Yeast Crv4/Ttp1, a predicted type II membrane protein, is involved in an event important for growth, functionally overlapping with the event regulated by calcineurin- and Mpk1 mediated pathways. Mol. Gen. Genet., 256, 481–487 (1997).
  • 29) Shitamukai, A., Hirata, D., Sonobe, S., and Miyakawa, T., Evidence for antagonistic growth regulation by calcineurin and HOG pathway in Saccharomyces cerevisiae. J. Biol. Chem., 279, 3651–3661 (2004).
  • 30) Bi, E., and Pringle, J. R., ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae. Mol. Cell. Biol., 16, 5264–5275 (1996).
  • 31) Yu, Y., Jiang, Y. W., Wellinger, R. J., Carlson, K., Roberts, J. M., and Stillman, D. J., Mutations in the homologous ZDS1 and ZDS2 genes affect cell cycle progression. Mol. Cell. Biol., 16, 5254–5263 (1996).
  • 32) Ma, X. J., Lu, Q., and Grunstein, M., A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swe1 kinase in Saccharomyces cerevisiae. Genes Dev., 10, 1327–1340 (1996).
  • 33) Tsuchiya, E., Matsuzaki, G., Kurano, K., Fukuchi, T., Tsukao, A., and Miyakawa, T., The Saccharomyces cerevisiae SSD1 gene is involved in the tolerance to high concentration of Ca2+ with the participation of HST1/NRC1/BFR1. Gene, 176, 35–38 (1996).
  • 34) Schwer, B., Linder, P., and Shuman, S., Effects of deletion mutations in the yeast Ces1 protein on cell growth and morphology and on high copy suppression of mutations in mRNA capping enzyme and translation initiation factor 4A. Nucleic Acids Res., 26, 803–809 (1998).
  • 35) Roy, N., and Runge, K., Two paralogs involved in transcriptional silencing that antagonistically control yeast life span. Curr. Biol., 10, 111–114 (2000).
  • 36) Sekiya-Kawasaki, M., Abe, M., Saka, A., Watanabe, D., Kono, K., Minemura-Asakawa, M., Ishihara, S., Watanabe, T., and Ohya, Y., Dissection of upstream regulatory components of the Rho1p effector, 1,3-β-glucan synthase, in Saccharomyces cerevisiae. Genetics, 162, 663–676 (2002).
  • 37) Booher, R. N., Deshaies, R. J., and Kirschner, M. W., Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J., 12, 3417–3426 (1993).
  • 38) Mizunuma, M., Hirata, D., Miyahara, K., Tsuchiya, E., and Miyakawa, T., Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature, 392, 303–306 (1998).
  • 39) Mizunuma, M., Hirata, D., Miyaoka, R., and Miyakawa, T., GSK-3 kinase Mck1 and calcineurin coordinately mediate Hsl1 down-regulation by Ca2+ in budding yeast. EMBO J., 20, 1074–1085 (2001).
  • 40) Mizunuma, M., Miyamura, K., Hirata, D., Yokoyama, H., and Miyakawa, T., Involvement of S-adenosylmethionine in G1 cell-cycle regulation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 101, 6086–6091 (2004).
  • 41) Mizunuma, M., Hirata, D., and Miyakawa, T., Implication of Pkc1p protein kinase C in sustaining Cln2p level and polarized bud growth in response to calcium signaling in Saccharomyces cerevisiae. J. Cell Sci., 118, 4219–4229 (2005).
  • 42) Tanaka, S., and Nojima, H., Nik1: a Nim1-like protein kinase of S. cerevisiae interacts with the Cdc28 complex and regulates cell cycle progression. Genes Cells, 1, 905–921 (1996).
  • 43) Barral, Y., Parra, M., Bidlingmaier, S., and Snyder, M., Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev., 13, 176–187 (1999).
  • 44) Yakura, M., Ozoe, F., Ishida, H., Nakagawa, T., Tanaka, K., Matsuda, H., and Kawamukai, M., zds1, a novel gene encoding an ortholog of Zds1 and Zds2, controls sexual differentiation, cell wall integrity, and cell morphology in fission yeast. Genetics, 172, 811–825 (2006).
  • 45) Neigeborn, L., and Mitchell, A. P., The yeast MCK1 gene encodes a protein kinase homolog that activates early meiotic gene expression. Genes Dev., 5, 533–548 (1991).
  • 46) Shero, J. H., and Hieter, P. A., Suppressor of a centromere DNA mutation encodes a putative protein kinase (MCK1). Genes Dev., 5, 549–560 (1991).
  • 47) Andoh, T., Hirata, Y., and Kikuchi, A., Yeast glycogen synthase kinase 3 is involved in protein degradation in cooperation with Bul1, Bul2 and Rsp5. Mol. Cell. Biol., 20, 6712–6720 (2000).
  • 48) Plyte, S. E., Hughes, K., Nikolakaki, E., Pulverer, B. J., and Woodgett, J. R., Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim. Biophys. Acta, 1114, 147–162 (1992).
  • 49) Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R., β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J., 16, 3797–3804 (1997).
  • 50) Griffioen, G., Swinnen, S., and Thevelein, J. M., Feedback inhibition on cell wall integrity signaling by Zds1 involves Gsk3 phosphorylation of a cAMP-dependent protein kinase regulatory subunit. J. Biol. Chem., 278, 23460–23471 (2003).
  • 51) Levin, D. E., Fields, F. P., Kunisawa, R., Bishop, J. M., and Thorner, J., A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell, 62, 213–224 (1990).
  • 52) Levin, D. E., and Bartlett-Heubusch, E., Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol., 116, 1221–1229 (1992).
  • 53) Paravicini, G., Cooper, M., Friedli, L., Smith, D. J., Carpentier, J. L., Klig, L. S., and Payton, M. A., The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol. Cell. Biol., 12, 4896–4905 (1992).
  • 54) Yoshida, S., Ikeda, E., Uno, I., and Mitsuzawa, H., Characterization of a staurosporine- and temperature-sensitive mutant, stt1, of Saccharomyces cerevisiae: STT1 is allelic to PKC1. Mol. Gen. Genet., 231, 337–344 (1992).
  • 55) Davenport, K. R., Sohaskey, M., Kamada, Y., Levin, D. E., and Gustin, M. C., A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J. Biol. Chem., 50, 30157–30161 (1995).
  • 56) Kamada, Y., Jung, U. S., Piotrowski, J., and Levin, D. E., The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev., 9, 1559–1571 (1995).
  • 57) Nonaka, H., Tanaka, K., Hirano, H., Fujiwara, T., Kohno, H., Umikawa, M., Mino, A., and Takai, Y., A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J., 14, 5931–5938 (1995).
  • 58) Igual, J. C., Johnson, A. L., and Johnston, L. H., Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J., 15, 5001–5013 (1996).
  • 59) Kamada, Y., Qadota, H., Python, C. P., Anraku, Y., Ohya, Y., and Levin, D. E., Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem., 271, 9193–9196 (1996).
  • 60) Marini, N. J., Meldrum, E., Buehrer, B., Hubberstey, A. V., Stone, D. E., Traynor-Kaplan, A., and Reed, S. I., A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START. EMBO J., 15, 3040–3052 (1996).
  • 61) Zarzov, P., Mazzoni, C., and Mann, C., The Slt2 (Mpk1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J., 15, 83–91 (1996).
  • 62) Gray, J. V., Ogas, J. P., Kamada, Y., Stone, M., Levin, D. E., and Herskowitz, I., A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J., 16, 4924–4937 (1997).
  • 63) Gustin, M. C., Albertyn, J., Alexander, M., and Davenport, K., MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 62, 1264–1300 (1998).
  • 64) Helliwell, S. B., Schmidt, A., Ohya, Y., and Hall, M. N., The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr. Biol., 8, 1211–1214 (1998).
  • 65) Delley, P. A., and Hall, M. N., Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J. Cell Biol., 147, 163–174 (1999).
  • 66) Dodou, E., and Treisman, R., The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol. Cell. Biol., 17, 1848–1859 (1997).
  • 67) Madden, K., Sheu, Y. J., Baetz, K., Andrews, B., and Snyder, M., SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science, 275, 1781–1784 (1997).
  • 68) Baetz, K., Moffat, J., Haynes, J., Chang, M., and Andrews, B., Transcriptional coregulation by the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4. Mol. Cell. Biol., 21, 6515–6528 (2001).
  • 69) Li, Y., Moir, R. D., Sethy-Coraci, I. K., Warner, J. R., and Willis, I. M., Repression of ribosome and tRNA synthesis in secretion-defective cells is signaled by a novel branch of the cell integrity pathway. Mol. Cell. Biol., 20, 3843–3851 (2000).
  • 70) Nierras, C. R., and Warner, J. R., Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in Saccharomyces cerevisiae. J. Biol. Chem., 274, 13235–13241 (1999).
  • 71) Nanduri, J., and Tartakoff, A. M., The arrest of secretion response in yeast: signaling from the secretory path to the nucleus via Wsc proteins and Pkc1p. Mol. Cell, 8, 281–289 (2001).
  • 72) Hansen, J., and Johannesen, P. F., Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol. Gen. Genet., 263, 535–542 (2000).
  • 73) Tehlivets, O., Hasslacher, M., and Kohlwein, S. D., S-adenosyl-L-homocysteine hydrolase in yeast: key enzyme of methylation metabolism and coordinated regulation with phospholipid synthesis. FEBS Lett., 577, 501–506 (2004).
  • 74) Baric, I., Fumic, K., Glenn, B., Cuk, M., Schulze, A., Finkelstein, J. D., James, S. J., Mejaski-Bosnjak, V., Pazanin, L., Pogribny, I. P., Rados, M., Sarnavka, V., Scukanec-Spoljar, M., Allen, R. H., Stabler, S., Uzelac, L., Vugrek, O., Wagner, C., Zeisel, S., and Mudd, S. H., S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc. Natl. Acad. Sci. USA, 101, 4234–4239 (2004).
  • 75) Castro, R., Rivera, I., Struys, E. A., Jansen, E. E., Ravasco, P., Camilo, M. E., Blom, H. J., Jakobs, C., and Tavares de Almeida, I., Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin. Chem., 49, 1292–1296 (2003).
  • 76) Yokoyama, H., Mizunuma, M., Okamoto, M., Yamamoto, J., Hirata, D., and Miyakawa, T., Involvement of calcineurin-dependent degradation of Yap1p in Ca2+-induced G2 cell-cycle regulation in Saccharomyces cerevisiae. EMBO Rep., 7, 519–524 (2006).
  • 77) Balzi, E., and Goffeau, A., Genetics and biochemistry of yeast multidrug resistance. Biochim. Biophys. Acta, 1187, 152–162 (1994).
  • 78) Hirata, D., Yano, K., and Miyakawa, T., Stress-induced transcriptional activation mediated by YAP1 and YAP2 genes that encode the Jun family of transcriptional activators in Saccharomyces cerevisiae. Mol. Gen. Genet., 242, 250–256 (1994).
  • 79) Kuge, S., and Jones, N., YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J., 13, 655–664 (1994).
  • 80) Wu, A. L., and Moye-Rowley, W. S., GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol. Cell. Biol., 14, 5832–5839 (1994).
  • 81) Wemmie, J. A., Wu, A. L., Harshman, K. D., Parker, C. S., and Moye-Rowley, W. S., Transcriptional activation mediated by the yeast AP-1 protein is required for normal cadmium tolerance. J. Biol. Chem., 269, 14690–14697 (1994).
  • 82) Miyahara, K., Hirata, D., and Miyakawa, T., yAP-1- and yAP-2-mediated, heat shock-induced transcriptional activation of the multidrug resistance ABC transporter genes in Saccharomyces cerevisiae. Curr. Genet., 29, 103–105 (1996).
  • 83) Kuge, S., Jones, N., and Nomoto, A., Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J., 16, 1710–1720 (1997).
  • 84) Owsianik, G., Balzil, L., and Ghislain, M., Control of 26S proteasome expression by transcription Mfactors regulating multidrug resistance in Saccharomyces cerevisiae. Mol. Microbiol., 43, 1295–1308 (2002).
  • 85) Lew, D. J., and Reed, S. I., A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol., 129, 739–749 (1995).
  • 86) Sia, R. A. L., Herald, H. A., and Lew, D. J., Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol. Biol. Cell, 7, 1657–1666 (1996).
  • 87) McMillan, J. N., Sia, R. A. L., and Lew, D. J., A morphogenesis checkpoint monitors the actin cytoskeleton in yeast. J. Cell Biol., 142, 1487–1499 (1998).
  • 88) McMillan, J. N., Sia, R. A., Bardes, E. S., and Lew, D. J., Phosphorylation-independent inhibition of cdc28p by the tyrosine kinase Swe1p in the morphogenesis checkpoint. Mol. Cell. Biol., 19, 5981–5990 (1999).
  • 89) Longtine, M. S., Theesfeld, C. L., McMillan, J. N., Weaver, E., Pringle, J. R., and Lew, D. J., Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell. Biol., 20, 4049–4061 (2000).
  • 90) Kubota, S., Takeo, I., Kume, K., Kanai, M., Shitamukai, A., Mizunuma, M., Miyakawa, T., Shimoi, H., Iefuji, H., and Hirata, D., Effect of ethanol on cell growth of budding yeast:genes that are important for cell growth in the presence of ethanol. Biosci. Biotechnol. Biochem., 68, 968–972 (2004).
  • 91) Shitamukai, A., Mizunuma, M., Hirata, D., Takahashi, H., and Miyakawa, T., A positive screening for drugs that specifically inhibit the Ca2+-signaling activity on the basis of the growth promoting effect on a yeast mutant with a peculiar phenotype. Biosci. Biotechnol. Biochem., 64, 1942–1946 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.