175
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Role of Cysteine Residues in 4-Oxalomesaconate Hydratase from Pseudomonas ochraceae NGJ1

, , , , , , & show all
Pages 449-457 | Received 14 Sep 2006, Accepted 30 Nov 2006, Published online: 22 May 2014

  • 1) Ornston, L. N., Regulation of catabolic pathways in Pseudomonas. Bacteriol. Rev., 35, 87–116 (1971).
  • 2) Maruyama, K., Purification and properties of γ-oxalomesaconate hydratase from Pseudomonas ochraceae grown with phthalate. Biochem. Biophys. Res. Commun., 128, 271–277 (1985).
  • 3) Hara, H., Masai, E., Miyauchi, K., Katayama, Y., and Fukuda, M., Characterization of the 4-carboxy-4-hydroxy-2-oxoadipate aldolase gene and operon structure of the protocatechuate 4,5-cleavage pathway genes in Sphingomonas paucimobilis SYK-6. J. Bacteriol., 185, 41–50 (2003).
  • 4) Maruyama, K., Purification and properties of 4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas ochraceae grown on phthalate. J. Biochem., 108, 327–333 (1990).
  • 5) Maruyama, K., Activation of Pseudomonas ochraceae 4-hydroxy-4-methyl-2-oxoglutarate aldolase by inorganic phosphate. J. Biochem., 108, 334–340 (1990).
  • 6) Pollard, J. R., and Bugg, T. D., Purification, characterisation and reaction mechanism of monofunctional 2-hydroxypentadienoic acid hydratase from Escherichia coli. Eur. J. Biochem., 251, 98–106 (1998).
  • 7) Flint, D. H., Emptage, M. H., Finnegan, M. G., Fu, W., and Johnson, M. K., The role and properties of the iron-sulfur cluster in Escherichia coli dihydroxy-acid dehydratase. J. Biol. Chem., 268, 14732–14742 (1993).
  • 8) Maruyama, K., Isolation and identification of the reaction product of α-hydroxy-γ-carboxymuconic ε-semialdehyde dehydrogenase. J. Biochem., 86, 1671–1677 (1979).
  • 9) Kersten, P. J., Dagley, S., Whittaker, J. W., Arciero, D. M., and Lipscomb, J. D., 2-pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species. J. Bacteriol., 152, 1154–1162 (1982).
  • 10) Maruyama, K., Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase. J. Biochem., 93, 557–565 (1983).
  • 11) Hara, H., Masai, E., Katayama, Y., and Fukuda, M., The 4-oxalomesaconate hydratase gene, involved in the protocatechuate 4,5-cleavage pathway, is essential to vanillate and syringate degradation in Sphingomonas paucimobilis SYK-6. J. Bacteriol., 182, 6950–6957 (2000).
  • 12) Providenti, M. A., Mampel, J., MacSween, S., Cook, A. M., and Wyndham, R. C., Comamonas testosteroni BR6020 possesses a single genetic locus for extradiol cleavage of protocatechuate. Microbiol., 147, 2157–2167 (2001).
  • 13) Eaton, R. W., Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J. Bacteriol., 183, 3689–3703 (2001).
  • 14) Wattiau, P., Bastiaens, L., van Herwijnen, R., Daal, L., Parsons, J. R., Renard, M.-E., Springael, D., and Cornelis, G. R., Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res. Microbiol., 152, 861–872 (2001).
  • 15) Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M. L., Pelletier, D. A., Beatty, J. T., Lang, A. S., Tabita, F. R., Gibson, J. L., Hanson, T. E., Bobst, C., Torres, J. L. T., Peres, C., Harrison, F. H., Gibson, J., and Harwood, C. S., Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol., 22, 55–61 (2004).
  • 16) Maruyama, K., Miwa, M., Tsujii, N., Nagai, T., Tomita, N., Harada, T., Sobajima, H., and Sugisaki, H., Cloning, sequencing, and expression of the gene encoding 4-hydroxy-4-methy-2-oxoglutarate aldolase from Pseudomonas ochraceae NGJ1. Biosci. Biotechnol. Biochem., 65, 2701–2709 (2001).
  • 17) Maruyama, K., Shibayama, T., Ichikawa, A., Sakou, Y., Yamada, S., and Sugisaki, H., Cloning and characterization of the genes encoding enzymes for protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1. Biosci. Biotechnol. Biochem., 68, 1434–1441 (2004).
  • 18) Sambrook, J., Fritsch, E. F., and Maniatis, T., “Molecular Cloning, a Laboratory Manual” 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).
  • 19) Pearson, W. R., and Lipman, D. J., Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA, 85, 2444–2448 (1988).
  • 20) Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res., 25, 3389–3402 (1997).
  • 21) Thompson, J. D., Higgins, D. G., and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680 (1994).
  • 22) Shine, J., and Dalgarno, L., The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA, 71, 1342–1346 (1974).
  • 23) Hashimoto-Gotoh, T., Mizuno, T., Ogasahara, Y., and Nakagawa, M., An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene, 152, 271–275 (1995).
  • 24) Vesterburg, O., Isoelectric focusing of proteins. Methods Enzymol., 22, 389–412 (1971).
  • 25) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).
  • 26) Bennet, T. P., Membrane filtration for determining protein in the presence of interfering substances. Nature, 18, 1131–1132 (1967).
  • 27) Riddle, P. W., Blakeley, R. L., and Zerner, B., Elleman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid): a reexamination. Anal. Biochem., 94, 75–81 (1979).
  • 28) Hunt, J. B., Neece, S. H., and Grinsburg, A., The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase. Anal. Biochem., 146, 150–157 (1985).
  • 29) Davis, B. J., Disc electrophoresis. II. Method and application to human serum proteins. Ann. NY Acad. Sci., 121, 404–427 (1964).
  • 30) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680–685 (1970).
  • 31) Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I., Atomic structure of acetylcholinesterase from Torpede californica: a prototypic acetylcholine-binding protein. Science, 253, 872–879 (1991).
  • 32) Laurell, H., Contreras, J. A., Castan, I., Langin, D., and Holm, C., Analysis of the psychrotolerant property of hormone-sensitive lipase through site-directed mutagenesis. Protein Eng., 13, 711–717 (2000).
  • 33) Dixon, M., The determination of enzyme inhibitor constants. Biochem. J., 55, 170–171 (1953).
  • 34) Hill, R. L., and Teipel, J. W., Fumarase and crotonase. Enzymes, 5, 539–571 (1971).
  • 35) Sheridan, R. P., and Allen, L. C., The active site electrostatic potential of human carbonic anhydrase. J. Am. Chem. Soc., 103, 1544–1550 (1981).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.