490
Views
74
CrossRef citations to date
0
Altmetric
Original Articles

Properties and Physiological Functions of UDP-Sugar Pyrophosphorylase in Arabidopsis

, , , , &
Pages 761-771 | Received 26 Oct 2006, Accepted 01 Dec 2006, Published online: 22 May 2014

  • 1) Reiter, W.-D., and Vanzin, G. F., Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol. Biol., 47, 95–113 (2001).
  • 2) Dolezal, O., and Cobbett, C. S., Arabinose kinase-deficient mutant of Arabidopsis thaliana. Plant Physiol., 96, 1255–1260 (1991).
  • 3) Sherson, S., Gy, I., Medd, J., Schmidt, R., Dean, C., Kreis, M., Lecharny, A., and Cobbett, C., The arabinose kinase, ARA1, gene of Arabidopsis is a novel member of the galactose kinase gene family. Plant Mol. Biol., 39, 1003–1012 (1999).
  • 4) Leibowitz, M. D., Dickinson, D. B., Loewus, F. A., and Loewus, M., Partial purification and study of pollen glucuronokinase. Arch. Biochem. Biophys., 179, 559–564 (1977).
  • 5) Neufeld, E. F., Feingold, D. S., Ilves, S. M., Kessler, G., and Hassid, W. Z., Phosphorylation of D-galacturonic acid by extracts from germinating seeds of Phaseolus aureus. J. Biol. Chem., 236, 3102–3105 (1961).
  • 6) Kotake, T., Yamaguchi, D., Ohzono, H., Hojo, S., Kaneko, S., Ishida, H. K., and Tsumuraya, Y., UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J. Biol. Chem., 279, 45728–45736 (2004).
  • 7) Ohashi, T., Cramer, N., Ishimizu, T., and Hase, S., Preparation of UDP-galacturonic acid using UDP-sugar pyrophosphorylase. Anal. Biochem., 352, 182–187 (2006).
  • 8) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 9) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 10) Murray, M. G., and Thompson, W. F., Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res., 8, 4321–4325 (1980).
  • 11) Clough, S. J., and Bent, A. F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16, 735–743 (1998).
  • 12) Murashige, T., and Skoog, F., A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant., 15, 473–497 (1962).
  • 13) Kosugi, S., Suzuka, I., Ohashi, Y., Murakami, T., and Arai, Y., Upstream sequences of rice proliferating cell nuclear antigen (PCNA) gene mediate expression of PCNA-GUS chimeric gene in meristems of transgenic tobacco plants. Nucleic Acids Res., 19, 1571–1576 (1991).
  • 14) Fan, L.-M., Wang, Y.-F., Wang, H., and Wu, W.-H., In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J. Exp. Bot., 52, 1603–1614 (2001).
  • 15) Pauly, M., Porchia, A., Olsen, C. E., Nunan, K. J., and Scheller, H. V., Enzymatic synthesis and purification of uridine diphospho-β-L-arabinopyranose, a substrate for the biosynthesis of plant polysaccharides. Anal. Biochem., 278, 69–73 (2000).
  • 16) Mio, T., Yabe, T., Arisawa, M., and Yamada-Okabe, H., The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases: gene cloning, protein expression, and catalytic mechanism. J. Biol. Chem., 273, 14392–14397 (1998).
  • 17) Wang-Gillam, A., Pastuszak, I., Stewart, M., Drake, R. R., and Elbein, A. D., Identification and modification of the uridine-binding site of the UDP-GalNAc (GlcNAc) pyrophosphorylase. J. Biol. Chem., 275, 1433–1438 (2000).
  • 18) Litterer, L. A., Schnurr, J. A., Plaisance, K. L., Storey, K. K., Gronwald, J. W., and Somers, D. A., Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol. Biochem., 44, 171–180 (2006).
  • 19) Schnurr, J. A., Storey, K. K., Jung, H. J. G., Somers, D. A., and Gronwald, J. W., UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis. Planta, 224, 520–532 (2006).
  • 20) Goto, K., and Meyerowitz, E. M., Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev., 8, 1548–1560 (1994).
  • 21) Honys, D., and Twell, D., Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol., 132, 640–652 (2003).
  • 22) Filichkin, S. A., Leonard, J. M., Monteros, A., Liu, P. P., and Nonogaki, H., A novel endo-β-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol., 134, 1080–1087 (2004).
  • 23) Hrubá, P., Honys, D., Twell, D., Capková, V., and Tupy, J., Expression of β-galactosidase and β-xylosidase genes during microspore and pollen development. Planta, 220, 931–940 (2005).
  • 24) Labarca, C., and Loewus, F., The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum. I. Utilization of injected stigmatic exudate. Plant Physiol., 50, 7–14 (1972).
  • 25) Labarca, C., and Loewus, F., The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum. II. Production and utilization of exudate from stigma and stylar canal. Plant Physiol., 52, 87–92 (1973).
  • 26) Cheung, A. Y., Wang, H., and Wu, H.-M., A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell, 82, 383–393 (1995).
  • 27) Wu, H.-M., Wang, H., and Cheung, A. Y., A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell, 82, 395–403 (1995).
  • 28) Schlüpmann, H., Bacic, A., and Read, S. M., Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto. Plant Physiol., 105, 659–670 (1994).
  • 29) Akita, K., Ishimizu, T., Tsukamoto, T., Ando, T., and Hase, S., Successive glycosyltransfer activity and enzymatic characterization of pectic polygalacturonate 4-α-galacturonosyltransferase solubilized from pollen tubes of Petunia axillaris using pyridylaminated oligogalacturonates as substrates. Plant Physiol., 130, 374–379 (2002).
  • 30) Zhou, T., Daugherty, M., Grishin, N. V., Osterman, A. L., and Zhang, H., Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. Structure, 8, 1247–1257 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.