63
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Loss of a GPI-Anchored Membrane Protein Aah3p Causes a Defect in Vacuolar Protein Sorting in Schizosaccharomyces pombe

, , , &
Pages 623-626 | Received 27 Oct 2006, Accepted 19 Dec 2006, Published online: 22 May 2014

  • 1) Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 280, 309–316 (1991).
  • 2) Prieto, J. A., Bort, B. R., Martinez, J., Randez-Gil, F., Buesa, C., and Sanz, P., Purification and characterization of new alpha-amylase of intermediate thermal stability from the yeast Lipomyces konoenkoae. Biochem. Cell Biol., 73, 41–49 (1995).
  • 3) Moranelli, F., Yaguchi, M., Calleja, B., and Nasim, A., Purification and characterization of the extracellular alpha-amylase activity of the yeast Schwanniomyces alluvius. Biochem. Cell Biol., 65, 899–908 (1987).
  • 4) Wilson, J. J., and Ingledew, W. M., Isolation and characterization of Schwanniomyces alluvius amylilytic enzymes. Appl. Environ. Microbiol., 44, 301–307 (1982).
  • 5) De Mot, R., and Verachtert, H., Secretion of α-amylase and multiple forms of glucoamylase by the yeast Trichosporon pullulans. Can. J. Microbiol., 32, 47–51 (1986).
  • 6) De Mot, R., and Verachtert, H., Purification and characterization of extracellular α-amylase and glucoamylase from yeast Candida Antarctica CBS6678. Eur. J. Biochem., 164, 643–654 (1987).
  • 7) Wanderley, K. J., Torres, F. A. G., Moraes, L. M. P., and Ulhoa, C. J., Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol. Lett., 231, 165–169 (2004).
  • 8) Morita, T., Tanaka, N., Hosomi, A., Giga-Hama, Y., and Takegawa, K., An α-amylase homologue, aah3, encodes a GPI-anchored membrane protein required for cell wall integrity and morphogenesis in Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem., 70, 1454–1463 (2006).
  • 9) De Groot, P. W. J., Hellingwerf, K. J., and Klis, F. M., Genome-wide identification of fungal GPI proteins. Yeast, 20, 781–796 (2003).
  • 10) Tabuchi, M., Iwaihara, O., Ohtani, Y., Ohuchi, N., Sakurai, J., Morita, T., Iwaihara, S., and Takegawa, K., Vacuolar protein sorting in fission yeast: cloning, biosysthesis, transport, and processing of carboxypeptidase Y from Sshizosaccharomyces pombe. J. Bacteriol., 179, 4179–4189 (1997).
  • 11) Takegawa, K., DeWald, D. B., and Emr, S. D., Schizosaccharomyces pombe Vps34p, a phosphatidylinositol-specific PI 3-kinase essential for normal cell growth and vacuole morphology. J. Cell Sci., 108, 3745–3756 (1995).
  • 12) Iwaki, T., Hosomi, A., Tokudomi, S., Kusunoki, Y., Fujita, Y., Giga-Hama, Y., Tanaka, N., and Takegawa, K., Vacuolar protein sorting receptor in Schizosaccharomyces pombe. Microbiol., 152, 1523–1532 (2006).
  • 13) Moreno, S., Klar, A., and Nurse, P., Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., 194, 795–823 (1991).
  • 14) Cheng, H., Sugiura, R., Wu, W., Fujita, M., Lu, Y., Sio, S. O., Kawai, R., Takegawa, K., Shuntoh, H., and Kuno, T., Role of the Rab GTP-binding protein Ypt3 in the fission yeast exocytic pathway, and its connection to calcineurin function. Mol. Biol. Cell, 13, 2963–2976 (2002).
  • 15) Takegawa, K., Iwaki, T., Fujita, Y., Morita, T., Hosomi, A., and Tanaka, N., Vesicular mediated protein transport pathways to the vacuole in Schizosaccharomyces pombe. Cell Struct. Funct., 28, 399–417 (2003).
  • 16) Vida, T. A., and Emr, S. D., A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol., 128, 779–792 (1995).
  • 17) Iwaki, T., Tanaka, N., Takagi, H., Giga-Hama, Y., and Takegawa, K., Characterization of end4 +, a gene required for endocytosis in Schizosaccharomyces pombe. Yeast, 21, 867–881 (2004).
  • 18) Bone, N., Millar, J. B. A., Toda, T., and Armstrong, J., Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases. Curr. Biol., 8, 135–144 (1998).
  • 19) Tanaka, N., and Takegawa, K., Functional characterization of Gms1p/UDP-galactose transporter in Schizosaccharomyces pombe. Yeast, 18, 745–757 (2001).
  • 20) Mitra, P., Zhang, Y., Rameh, L. E., Ivshina, M. P., McCollum, D., Nunnari, J. J., Hendricks, G. M., Kerr, M. L., Field, S. J., Cantley, L. C., and Ross, A. H., A novel phosphatidylinositol (3,4,5)P3 pathway in fission yeast. J. Cell Biol., 166, 205–211 (2004).
  • 21) Raymond, C. K., Howald-Stevenson, I., Vater, C. A., and Stevens, T. H., Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell, 3, 1389–1402 (1992).
  • 22) Piper, R. C., Cooper, A. A., Yang, H., and Stevens, T. H., VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J. Cell Biol., 131, 603–617 (1995).
  • 23) Rieder, S. E., and Emr, S. D., A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol. Biol. Cell, 8, 2307–2327 (1997).
  • 24) Wiederkehr, A., Meier, K. D., and Riezmen, H., Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis. Yeast, 18, 759–773 (2001).
  • 25) Bankaitis, V. A., Johnson, L. M., and Emr, S. D., Isolation of yeast mutants defective in protein targeting to the vacuole. Proc. Natl. Acad. Sci. USA, 83, 9075–9079 (1986).
  • 26) Rothman, J. H., and Stevens, T. H., Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell, 47, 1041–1051 (1986).
  • 27) Avaro, S., Belgareh-Touzé, N., Sibella-Argüelles, C., Volland, C., and Haguenauer-Tsapis, R., Mutants defective in secretory/vacuolar pathways in the EUROFAN collection of yeast disruptants. Yeast, 19, 351–371 (2002).
  • 28) Bonangelino, C. J., Chavez, E. M., and Bonifacino, J. S., Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell, 13, 2486–2501 (2002).
  • 29) Watanabe, R., Funato, K., Venkataraman, K., Futerman, A. H., and Riezman, H., Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J. Biol. Chem., 277, 49538–49544 (2002).
  • 30) Bagnat, M., Keränen, S., Shevchenko, A., Shevchenko, A., and Simons, K., Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl. Acad. Sci. USA, 97, 3254–3259 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.