209
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Screening of Drugs That Suppress Ste11 MAPKKK Activation in Yeast Identified a c-Abl Tyrosine Kinase Inhibitor

, , , , , , , , , & show all
Pages 772-782 | Received 27 Oct 2006, Accepted 29 Nov 2006, Published online: 22 May 2014

  • 1) Bennasroune, A., Gardin, A., Aunis, D., Cremel, G., and Hubert, P., Tyrosine kinase receptors as attractive targets of cancer therapy. Crit. Rev. Oncol. Hematol., 50, 23–38 (2004).
  • 2) Ishizawar, R., and Parsons, S. J., c-Src and cooperating partners in human cancer. Cancer Cell, 6, 209–214 (2004).
  • 3) Blume-Jensen, P., and Hunter, T., Oncogenic kinase signalling. Nature, 411, 355–365 (2001).
  • 4) Qi, M., and Elion, E. A., MAP kinase pathways, J. Cell Sci., 118, 3569–3572 (2005).
  • 5) Herbst, R. S., Fukuoka, M., and Baselga, J., Gefitinib: a novel targeted approach to treating cancer. Nat. Rev. Cancer, 4, 956–965 (2004).
  • 6) Hantschel, O., and Superti-Furga, G., Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat. Rev. Mol. Cell. Biol., 5, 33–44 (2004).
  • 7) Siegel-Lakhai, W. S., Beijnen, J. H., and Shellens, J. H. M., Current knowledge and future directions of the selective epidermal growth factor receptor inhibitors Erlotinib (Tarceva) and Gefitinib (Iressa). Oncologist, 10, 579–589 (2005).
  • 8) Simon, J. A., and Bedalov, A., Yeast as a model system for anticancer drug discovery. Nat. Rev. Cancer, 4, 481–492 (2004).
  • 9) Shitamukai, A., Mizunuma, M., Hirata, D., Takahashi, H., and Miyakawa, T., A positive screening for drugs that specifically inhibit the Ca2+-signaling activity on the basis of the growth promoting effect on a yeast mutant with a peculiar phenotype. Biosci. Biotechnol. Biochem., 64, 1942–1946 (2000).
  • 10) Tsuchiya, E., Yukawa, M., Miyakawa, T., Kimura, K. I., and Takahashi, H., Borrelidin inhibits a cyclin-dependent kinase (CDK), Cdc28/Cln2, of Saccharomyces cerevisiae. J. Antibiotics, 54, 84–90 (2001).
  • 11) Miyamoto, Y., Machida, K., Mizunuma, M., Emoto, Y., Sato, N., Miyahara, K., Hirata, D., Usui, T., Takahashi, H., Osada, H., and Miyakawa, T., Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A. J. Biol. Chem., 277, 28810–28814 (2002).
  • 12) Kobayashi, Y., Mizunuma, M., Osada, H., and Miyakawa, T., Identification of Saccharomyces cerevisiae ribosomal protein L3 as a target of curvularol, a G1-specific inhibitor of mammalian cells. Biosci. Biotechnol. Biochem., 70, 2451–2459 (2006).
  • 13) Stevenson, B. J., Rhodes, N., Errede, B., and Sprague, G. F., Jr., Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev., 6, 1293–1304 (1992).
  • 14) Ramer, S. W., Elledge, S. J., and Davis, R. W., Dominant genetics using a yeast genomic library under the control of a strong inducible promoter. Proc. Natl. Acad. Sci. USA, 89, 11589–11593 (1992).
  • 15) Cairns, B. R., Ramer, S. W., and Kornberg, R. D., Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase. Genes Dev., 6, 1305–1318 (1992).
  • 16) O’Rouke, S., and Herskowitz, I., The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev., 12, 2874–2886 (1998).
  • 17) Liu, H., Styles, C. A., and Fink, G. R., Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science, 262, 1741–1744 (1993).
  • 18) Willingham, S., Outeiro, T. F., DeVit, M. J., Lindquist, S. L., and Muchowski, P. J., Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein. Science, 302, 1769–1772 (2003).
  • 19) Krushner, D. B., Lindenbach, B. D., Grdzelishvili, V. Z., Noueiry, A. O., Poul, S. M., and Ahlquist, P., Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc. Natl. Acad. Sci. USA, 100, 15764–15769 (2003).
  • 20) Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S. C., and Muchowski, P. J., A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for huntington’s disease. Nat. Genet., 37, 526–531 (2005).
  • 21) Panavas, T., Serviene, E., Brasher, J., and Nagy, P. D., Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc. Natl. Acad. Sci. USA, 102, 7326–7331 (2005).
  • 22) Serviene, E., Shapka, N., Cheng, C., Panavas, T., Phuangrat, B., Baker, J., and Nagy, P. D., Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. USA, 102, 10545–10550 (2005).
  • 23) Ren, R., Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer, 5, 172–183 (2005).
  • 24) Walkenhorst, J., Goga, A., Witte, O. N., and Superti-Furga, G., Analysis of human c-Abl tyrosine kinase activity and regulation in S. pombe. Oncogene, 12, 1513–1520 (1996).
  • 25) Akada, R., Kallel, L., Johnson, D. I., and Kurjan, J., Genetic relationships between the G protein βγ complex, Ste5p, Ste20p and Cdc42p: investigation of effector roles in the yeast pheromone response pathway. Genetics, 143, 103–117 (1996).
  • 26) Sikorski, R. S., and Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19–27 (1989).
  • 27) Akada, R., Yamamoto, J., and Yamashita, I., Screening and identification of yeast sequences that cause growth inhibition when overexpressed. Mol. Gen. Genet., 254, 267–274 (1997).
  • 28) Whiteway, M., Hougan, L., and Thomas, D. Y., Overexpression of the STE4 gene leads to mating response in haploid Saccharomyces cerevisiae. Mol. Biol. Cell, 10, 217–222 (1990).
  • 29) Kawahata, M., Amari, S., Nishizawa, Y., and Akada, R., A positive selection for plasmid loss in Saccharomyces cerevisiae using galactose-inducible growth inhibitory sequences. Yeast, 15, 1–10 (1999).
  • 30) Rose, M. D., Winston, F., and Hieter, P., “Methods in Yeast Genetics: A Laboratory Course Manual,” Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1990).
  • 31) Chen, D. C., Yang, B. C., and Kuo, T. T., One-step transformation of yeast in stationary phase. Curr. Genet., 21, 83–84 (1992).
  • 32) Louvion, J. F., Abbas-Terki, T., and Picard, D., Hsp90 is required for pheromone signaling in yeast. Mol. Biol. Cell, 9, 3071–3083 (1998).
  • 33) Sharma, S. V., Agatsuma, T., and Nakano, H., Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene, 16, 2639–2645 (1998).
  • 34) Schulte, T. W., Akinaga, S., Soga, S., Sullivan, W., Stensgard, B., Toft, D., and Neckers, L. M., Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones, 3, 100–108 (1998).
  • 35) Soga, S., Kozawa, T., Narumi, H., Akinaga, S., Irie, K., Matsumoto, K., Sharma, S. V., Nakano, H., Mizukami, T., and Hara, M., Radicicol leads to selective depletion of Raf kinase and disrupts K-Ras-activated aberrant signaling pathway. J. Biol. Chem., 273, 822–828 (1998).
  • 36) Fry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W., and Bridges, A. J., A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science, 265, 1093–1095 (1994).
  • 37) Jackson, P., and Baltimore, D., N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J., 8, 449–456 (1989).
  • 38) Wilson, L. K., Benton, B. M., Zhou, S., Thorner, J., and Martin, G. S., The yeast immunophilin Fpr3 is a physiological substrate of the tyrosine-specific phosphoprotein phosphatase Ptp1. J. Biol. Chem., 270, 25185–25193 (1995).
  • 39) Abbas-Terki, T., Donze, O., and Picard, D., The molecular chaperone Cdc37 is required for Ste11 function and pheromone-induced cell cycle arrest. FEBS Lett., 4, 111–116 (2000).
  • 40) Lee, P., Shabbir, A., Cardozo, C., and Caplan, A. J., Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Mol. Biol. Cell, 15, 1785–1792 (2004).
  • 41) Persons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G. W., Kane, P. M., Hughes, T. R., and Boone, C., Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotech., 22, 62–69 (2004).
  • 42) Neckers, L., Schulte, T. W., and Mimnaugh, E., Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest. New Drugs, 17, 361–373 (1999).
  • 43) Ronnen, E. A., Kondagunta, G. V., Ishill, N., Sweeney, S. M., DeLuca, J. K., Schwartz, L., Bacik, J., and Motzer, R. J., A phase II trial of 17-(Allylamino)-17demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest. New Drugs, 24, 543–546 (2006).
  • 44) Chang, H. J., Nathan, D. F., and Lindquist, S., In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol. Cell. Biol., 17, 318–325 (1997).
  • 45) Yamamoto, A., Mizukami, Y., and Sakurai, H., Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J. Biol. Chem., 280, 11911–11919 (2005).
  • 46) Zhao, R., Davey, M., Hsu, Y., Kaplanek, P., Tong, A., Parsons, A. B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A., and Houry, W. A., Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell, 120, 715–727 (2005).
  • 47) Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., and Saito, H., Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatase. Mol. Cell. Biol., 17, 1289–1297 (1997).
  • 48) Boshelli, D. H., Wang, Y. D., Fei, W. Y., Wu, B., Zhang, N., Dutia, M., Powell, D. W., Wissner, A., Arndt, K., Weber, J. M., and Boschelli, F., Synthesis and Src kinase inhibitory activity of a series of 4-phenylamino-3-quinolinecarbonitriles. J. Med. Chem., 44, 822–833 (2001).
  • 49) Sebolt-Leopold, J. S., and English, J. M., Mechanisms of drug inhibition of signalling molecules. Nature, 441, 457–462 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.