598
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of the Gene Expression Patterns of Alcohol Dehydrogenase Isozymes in the Thermotolerant Yeast Kluyveromyces marxianus and Their Physiological Functions

, , , &
Pages 1170-1182 | Received 02 Nov 2006, Accepted 31 Jan 2007, Published online: 22 May 2014

  • 1) Bränden, C. I., Jörnvall, H., Eklund, H., and Furugren, B., Alcohol dehydrogenases. In “The Enzymes” 3rd edn., ed. Boyer, P. D., Academic Press, New York, pp. 103–190 (1975).
  • 2) Bennetzen, J. L., and Hall, B. D., The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J. Biol. Chem., 257, 3018–3025 (1982).
  • 3) Ciriary, M., Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADHII. Mol. Gen. Genet., 138, 157–164 (1975).
  • 4) Wills, C., and Jörnvall, H., Amino acid substitutions in two functional mutants of yeast alcohol dehydrogenase. Nature, 279, 734–736 (1979).
  • 5) Russell, P. R., and Hall, B. D., The primary structure of the alcohol dehydrogenase gene from the fission yeast Schizosaccharomyces pombe. J. Biol. Chem., 258, 143–149 (1983).
  • 6) Young, E. T., and Pilgrim, D., Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol., 5, 3024–3034 (1985).
  • 7) Williamson, V. M., and Paquin, C., Homology of Saccharomyces cerevisie ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol. Gen. Genet., 209, 371–381 (1987).
  • 8) Feldmann, H., Aigle, M., Aljinovic, G., André, B., Baclet, M. C., Barthe, C., Baur, A., Bécam, A. M., Biteau, N., Boles, E., Brandt, T., Brendel, M., Brückner, M., Bussereau, F., Christiansen, C., Contreras, R., Crouzet, M., Cziepluch, C., Démolis, N., Delaveau, Th., Doignon, F., Domdey, H., Düsterhus, S., Dubois, E., Dujon, B., Bakkoury, M. El., Entian, K.-D., Feuermann, M., Fiers, W., Fobo, G. M., Fritz, C., Gassenhuber, H., Glansdorff, N., Goffeau, A., Grivell, L. A., de Haan, M., Hein, C., Herbert, C. J., Hollenberg, C. P., Holmstrøm, K., Jacq, C., Jacquet, M., Jauniaux, J. C., Jonniaux, J.-L., Kallesøe, T., Kiesau, P., Kirchrath, L., Kötter, P., Korol, S., Liebl, S., Logghe, M., Lohan, A. J. E., Louis, E. J., Li, Z. Y., Maat, M. J., Mallet, L., Mannhaupt, G., Messenguy, F., Miosga, T., Molemans, F., MülIer, S., Nasr, F., Obermaier, B., Perea, J., Piérard, A., Piravandi, E., Pohl, F. M., Pohl, T. M., Potier, S., Proft, M., Purnelle, B., Ramezani Rad, M., Rieger, M., Rose, M., Schaaff-Gerstenschläger, I., Scherens, B., Schwarzlose, C., Skala, J., Slonimski, P. P., Smits, P. H. M., Souciet, J. L., Steensma, H. Y., Stucka, R., Urrestarazu, A., van der Aart, Q. J. M., van Dyck, L., Vassarotti, A., Vetter, I., Vierendeels, F., Vissers, S., Wagner, G., de Wergifosse, P., Wo1fe, K. H., Zagulski, M., Zimmermann, F. K., Mewes, H. W., and Kleine, K., Complete DNA sequence of yeast chromosome II. EMBO J., 13, 5795–5809 (1994).
  • 9) Larroy, C., Fernández, M. R., González, E., Pares, X., and Biosca, J. A., Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem. J., 361, 163–172 (2002).
  • 10) Larroy, C., Pares, X., and Biosca, J. A., Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur. J. Biochem., 269, 5738–5745 (2002).
  • 11) Mazzoni, C., Saliola, M., and Falcone, C., Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis. Mol. Microbiol., 6, 2279–2286 (1992).
  • 12) Saliola, M., Shuster, J. R., and Falcone, C., The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis. Yeast, 6, 193–204 (1990).
  • 13) Saliola, M., Gonnella, R., Mazzaoni, C., and Falcone, C., Two genes encoding putative mitochondrial alcohol dehydrogenase are present in the yeast Kluyveromyces lactis. Yeast, 7, 391–400 (1991).
  • 14) Shain, D. H., Salvadore, C., and Denis, C. L., Evolution of alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis. Mol. Gen. Genet., 232, 479–488 (1992).
  • 15) Saliola, M., and Falcone, C., Two mitochondrial alcohol dehydrogenase activities of Kluyveromyces lactis are differently expressed during respiration and fermentation. Mol. Gen. Genet., 249, 665–672 (1995).
  • 16) Rouwenhorst, R. J., Visser, L. E., van der Baan, A. A., Scheffers, W. A., and van Dijken, J. P., Production, distribution and kinetic properties of inulinase in continuous cultures of Kluyvermyces marxianus CBS 6556. Appl. Environ. Microbiol., 54, 1131–1137 (1988).
  • 17) Steensma, H. Y., de Jongh, F. C. M., and Linnekamp, M., The use of electrophoretic karyotypes in the classification of yeasts: Kluyveromyces marxianus and Kluyveromyces lactis. Curr. Genet., 14, 311–317 (1988).
  • 18) Belem, M. A. F., and Lee, B. H., Production of bioingredients from Kluyveromyces marxianus grown on whey: an alternative. Crit. Rev. Food Sci., 38, 565–598 (1998).
  • 19) Wittmann, C., Hans, M., and Bluemke, W., Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast, 19, 1351–1363 (2002).
  • 20) Castrillo, J. I., and Ugalde, U. O., Patterns of energy metabolism and growth kinetics of Kluyveromyces marxianus in whey chemostat culture. Appl. Microbiol. Biotecnol., 40, 386–393 (1993).
  • 21) Mansour, M. H., Ghaly, A. E., Benhassan, R. M., and Nassar, M. A., Modeling batch production of single cell protein from cheese whey. I. Kluyveromyces fragilis growth. Appl. Biochem. Biotechnol., 43, 1–14 (1993).
  • 22) Kim, J. K., Tak, K. T., and Moon, J. H., A continuous fermentation of Kluyveromyces fragilis for the production of a highly nutritious protein diet. Aquacult. Eng., 18, 41–49 (1998).
  • 23) Hensing, M., Vrouwenvelder, H., Hellinga, C., Baartmans, R., and van Dijken, H., Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Appl. Microbiol. Biotechnol., 42, 516–521 (1994).
  • 24) Pessoa, A. Jr., and Vitolo, M., Inulinase from Kluyveromyces marxianus: culture medium composition and enzyme extraction. Braz. J. Chem. Eng., 16, 237–245 (1999).
  • 25) Kushi, R. T., Monti, R., and Contiero, J., Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J. Ind. Microbiol. Biotechnol., 25, 63–69 (2000).
  • 26) Bojorge, N., Valdman, B., Acevedo, F., and Gentina, J. C., A semi-structured model for growth and beta-galactosidase production by fed-batch fermentation of Kluyveromyces marxianus. Bioproc. Eng., 21, 313–318 (1999).
  • 27) Furlan, S. A., Schneider, A. L. S., Merkle, R., Carvalho-Jonas, M. D., and Jonas, R., Formulation of a lactose-free, low-cost culture medium for the production of beta-d-galactosidase by Kluyveromyces marxianus. Biotechnol. Lett., 22, 589–593 (2000).
  • 28) Martins, D. B., De Souza, C. G., Simões, D. A., and De Morais, M. A., The beta-galactosidase activity in Kluyveromyces marxianus CBS 6556 decreases by high concentrations of galactose. Curr. Microbiol., 44, 379–382 (2002).
  • 29) Caballero, R., Olguín, P., Cruz-Guerrero, A., Gallardo, F., García-Garibay, M., and Gómez-Ruiz, L., Evaluation of Kluyveromyces marxianus as baker’s yeast. Food Res. Int., 28, 37–41 (1995).
  • 30) Limtong, S., Sringiew, C., and Yongmanitchai, W., Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresource Technol., in press.
  • 31) Ameyama, M., Shinagawa, E., Matsushita, K., and Adachi, O., D-Fructose dehydrogenase of Gluconobacter industrius: purification, characterization, and application to enzymatic microdetermination of D-fructose. J. Bacteriol., 145, 814–823 (1981).
  • 32) Adachi, O., Toyama, K., Sinagawa, K., and Ameyama, M., Purification of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric. Biol. Chem., 42, 2045–2056 (1978).
  • 33) Yamada, M., Sumi, K., Matsushita, K., Adachi, O., and Yamada, Y., Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J. Biol. Chem., 268, 12812–12817 (1993).
  • 34) Sambrook, J., and Russell, D. W., “Molecular Cloning, a laboratory manual” 3rd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (2001).
  • 35) Sanger, F., Nicklen, S., and Coulson, A. R., DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467 (1977).
  • 36) Aiba, H., Adhya, S., and de Crombrugghe, B., Evidence for two functional gal promoters in intact Escherichia coli cells. J. Biol. Chem., 256, 11905–11910 (1981).
  • 37) Thein, S. L., and Wallace, R. B., The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic disorders. In “Human Genetic Distances: A Practical Approach,” ed. Davis, K. E., IRL Press, Herndon, pp. 33–50 (1986).
  • 38) Nitta, T., Nagamitsu, H., Murata, M., Izu, H., and Yamada, M., Function of the σE regulon in dead-cell lysis in stationary phase Escherichia coli. J. Bacteriol., 182, 5231–5237 (2000).
  • 39) Thompson, J. D., Higgins, D. G., and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh matrix choice. Nucleic Acid Res., 22, 4673–4680 (1994).
  • 40) Ladrière, J. M., Delcour, J., and Vandenhaute, J., Sequence of a gene coding for a cytoplasmic alcohol dehydrogenase from Kluyveromyces marxianus ATCC12424. Biochim. Biophys. Acta, 1173, 99–101 (1993).
  • 41) Ladrière, J. M., Geolis, I., Guèrineau, M., and Vandenhaute, J., Kluyveromyces marxianus exhibits an ancestral Saccharomyces cerevisiae genome organization downstream of ADH2. Gene, 255, 83–91 (2000).
  • 42) Chambers, A., Packham, E. A., and Graham, I. R., Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr. Genet., 29, 1–9 (1995).
  • 43) Gancedo, J. M., Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev., 62, 334–361 (1998).
  • 44) Mazzoni, C., Santori, F., Saliola, M., and Falcone, C., Molecular analysis of UASE, a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis. Res. Microbiol., 151, 19–28 (2000).
  • 45) Mager, W. H., and De Kruijff, A. J. J., Stress-induced transcriptional activation. Microbiol. Rev., 59, 506–531 (1995).
  • 46) Bennetzen, J. L., and Hall, B. D., Codon selection in yeast. J. Biol. Chem., 257, 3026–3031 (1982).
  • 47) Pilgrim, D., and Young, E. T., Primary structure requirements for correct sorting of the yeast mitochondrial protein ADHIII to the yeast mitochondrial matrix space. Mol. Cell. Biol., 7, 294–304 (1987).
  • 48) Mooney, D., Pilgrim, D. B., and Young, E. T., Mutant alcohol dehydrogenase (ADHIII) presequences that affect both in vitro mitochondrial import and in vitro processing by the matrix protease. Mol. Cell. Biol., 10, 2801–2808 (1990).
  • 49) Sun, H. W., and Plapp, B. V., Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family. J. Mol. Evol., 34, 522–535 (1992).
  • 50) Reid, M. F., and Fewson, C. A., Molecular characterization of microbial alcohol dehydrogenases. CRC Crit. Rev. Microbiol., 20, 13–56 (1994).
  • 51) Adolph, H. W., Zwart, P., Meijers, R., Hubatsch, I., Kiefer, M., Lamzin, V., and Cedergren-Zeppezauer, E., Structural basis for substrate specificity difference of horse liver alcohol dehydrogenase isozymes. Biochemistry, 39, 12885–12897 (2000).
  • 52) Jörnvall, H., Eklund, H., and Bränden, C. I., Subunit conformation of yeast alcohol dehydrogenase. J. Biol. Chem., 253, 8414–8419 (1978).
  • 53) Green, D. W., Sun, H. W., and Plapp, B. V., Inversion of substrate specificity of yeast alcohol dehydrogenase. J. Biol. Chem., 268, 7792–7798 (1993).
  • 54) Sun, H. W., and Plapp, B. V., Progressive sequence alignment and molecular evolution of the zinc containing alcohol dehydrogenase family. J. Mol. Evol., 34, 522–535 (1992).
  • 55) Schuller, H. J., Transcription control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet., 43, 139–160 (2003).
  • 56) Mulder, W., Scholten, H. J. M., and Grivell, L. A., Carbon catabolite regulation of transcription of nuclear genes coding for mitochondrial proteins in the yeast Kluyveromyces lactis. Curr. Genet., 28, 267–273 (1995).
  • 57) Kobayashi, N., and McEntee, K., Identification of cis and trans components of a novel heat shock stress regulation pathway in Saccharomyces cerevisiae. Mol. Cell. Biol., 13, 248–256 (1993).
  • 58) Schuller, C., Brewster, J. L., Alexander, M. R., Gustin, M. C., and Ruis, H., The Hog pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J., 13, 4382–4389 (1994).
  • 59) Varela, J. C. S., Praekelt, U. M., Meacock, P. A., Planta, R. J., and Mager, W. H., The Saccharomyces cerevisiae HSP12 gene is activated by the high osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol., 15, 6232–6245 (1995).
  • 60) Billard, P., Dumond, H., and Bolotin-Fukuhara, M., Characterization of an AP-I-like transcription factor that mediates an oxidative stresses response in Kluyveromyces lactis. Mol. Gen. Genet., 257, 62–70 (1997).
  • 61) Kuge, S., and Jones, N., YAP1 dependent activation of TRX2 is essential for the response of S. cerevisiae to oxidative stress by hydroperoxides. EMBO J., 13, 655–664 (1994).
  • 62) Ruis, H., and Schuller, C., Stress signaling in yeast. BioEssays, 17, 959–965 (1995).
  • 63) Shore, D., and Nasmyth, D., Purification and cloning of a DNA-binding protein from yeast that binds to both silencer and activator elements. Cell, 51, 721–732 (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.