596
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Preventive Effects of Moringa oleifera (Lam) on Hyperlipidemia and Hepatocyte Ultrastructural Changes in Iron Deficient Rats

, , , &
Pages 1826-1833 | Received 15 Nov 2006, Accepted 30 Apr 2007, Published online: 22 May 2014

  • 1) Viteri, F. E., Iron supplementation for the control of iron deficiency in populations at risk. Nutr. Rev., 55, 195–209 (1997).
  • 2) Dallman, P. R., Biochemical basis for the manifestations of iron deficiency. Annu. Rev. Nutr., 6, 13–40 (1986).
  • 3) Cunnane, S. C., and MacAdoo, K. R., Iron intake influences essential fatty acid and lipid composition of rat plasma and erythrocytes. J. Nutr., 117, 1514–1519 (1987).
  • 4) Medeiros, D. M., Plattner, A., Jennings, D., and Stoecker, B., Bone morphology, Strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J. Nutr., 132, 3135–3141 (2002).
  • 5) Medeiros, D. M., Stoecker, B., Plattner, A., Jennings, D., and Haub, M., Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J. Nutr., 134, 3061–3067 (2004).
  • 6) Katsumata, S., Tsuboi, R., Uehara, M., and Suzuki, K., Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci. Biotechnol. Biochem., 70, 2547–2550 (2006).
  • 7) Beutler, E., Iron enzymes in iron deficiency. I. Cytochrome c. Am. J. Med. Sci., 234, 517–527 (1957).
  • 8) Dallman, P. R., and Goodman, J. R., Enlargement of mitochondrial compartment in iron and copper deficiency. Blood, 35, 496–505 (1970).
  • 9) Dallman, P. R., and Goodman, J. R., The effects of iron deficiency on the hepatocyte: a biochemical and ultrastructural study. J. Cell Biol., 48, 79–90 (1971).
  • 10) Makkar, H. P. S., and Becker, K., Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J. Agric. Sci. (Cambridge), 128, 311–322 (1997).
  • 11) Richter, N., Sidduraju, P., and Becker, K., Evaluation of nutritional quality of Moringa (Moringa oleifera Lam) leaves as alternative protein source for Nile Tilapia (Oreochromis niloticus L.). Aquaculture, 217, 599–611 (2003).
  • 12) Guevara, A. P., Vargas, C., Sakurai, H., Fujiwara, Y., Hashimoto, K., Maoka, T., Kozuka, M., Ito, Y., Tokuda, H., and Hishino, H., An antitumor promoter from Moringa oleifera Lam. Mutat. Res., 440, 181–188 (1999).
  • 13) Kurma, S. R., and Mishra, S. H., Anti inflammatory and hepatoprotective activities of fruits of Moringa pterygosperma Gaerth. Ind. J. Nat. Prod., 14, 3–10 (1998).
  • 14) Tahiliani, P., and Kar, A., Role of Moringa oleifera leaf extract in the regulation of thyroid hormone status in adult male and female rats. Pharmacol. Res., 41, 319–323 (2000).
  • 15) Seigler, D. S., Seilheimer, S., Keesy, J., and Huang, H. F., Tannins from four common acacia species of Texas and Northeastern Mexico. Econ. Bot., 40, 220–232 (1986).
  • 16) Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., and Kanazawa, K., Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem., 51, 571–581 (2003).
  • 17) Mertz, E. T., Hassen, M. M., Cairns-Whittern, C., Kirleis, A. W., Tu, L., and Axtell, J. D., Pepsin digestibility of proteins in sorghum and other major cereals. Proc. Natl. Acad. Sci., 81, 1–2 (1984).
  • 18) Concon, J. M., and Soltess, D., Rapid micro Kjeldahl digestion of cereal grains and other biological materials. Anal. Biochem., 53, 35–41 (1973).
  • 19) Kane, A. P., and Miller, D. D., In vitro estimation of the effects of selected proteins on iron bioavailability. Am. J. Clin. Nutr., 39, 393–401 (1984).
  • 20) Folch, J., Lees, M., and Sloane Stanley, G. H., A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497–509 (1957).
  • 21) Spayd, R. W., Bruschi, B., Burdick, B. A., Dappen, G. M., Eikenberry, J. N., Esders, T. W., Figueras, J., Goodhue, C. T., LaRossa, D. D., Nelson, R. W., Rand, R. N., and Wu, T.-W., Multilayer film elements for clinical analysis: applications to representative chemical determinations. Clin. Chem., 24, 1343–1350 (1978).
  • 22) Richmond, W., Preparation and propreties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem., 19, 1350–1356 (1973).
  • 23) Ash, K. O., and Hentschel, W. M., High-density lipoproteins estimated by an enzymatic cholesterol procedure with a centrifugal analyzer. Clin. Chem., 24, 2180–2184 (1978).
  • 24) Sherman, A. R., Serum lipids in sucking and post-weanling iron deficient rats. Lipids, 14, 888–892 (1979).
  • 25) Sherman, A. R., Guthrie, H. A., Wolinsky, I., and Zulak, I. M., Iron deficiency hyperlipidemia in 18-day-old rat pups: effects of milk lipids, lipoprotein lipase, and triglyceride synthesis. J. Nutr., 108, 152–162 (1978).
  • 26) Henderson, S. A., Dallman, P. R., and Brooks, G. A., Glucose turnover and oxidation are increased in the iron-deficient anemic rat. Am. J. Physiol., 250, E414–E421 (1986).
  • 27) Favier, M. L., Bost, P. E., Guittard, C., Demigne, C., and Remesy, C., The cholesterol lowering effect of guar gum is not the result of a simple diversion of bile salt acids toward fecal excretion. Lipids, 32, 953–959 (1997).
  • 28) Ghasi, S., Nwobodo, E., and Ofili, J. O., Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed Wistar rats. J. Ethnopharmacol., 69, 21–25 (2000).
  • 29) Mehta, K., Balaraman, R., Amin, A. H., Bafna, P. A., and Gulati, O. D., Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits. J. Ethnopharmacol., 86, 191–195 (2003).
  • 30) Nakamura, Y., and Tonogai, Y., Effects of grape seed polyphenols on serum and hepatic lipid contents and fecal steroid excretion in normal and hypercholesterolemic rats. J. Health Sci., 48, 570–578 (2002).
  • 31) Fki, I., Bouaziz, M., Sahnoun, Z., and Sayadi, S., Hypo-cholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg. Med. Chem., 13, 5362–5370 (2005).
  • 32) Zou, Y., Lu, Y., and Wei, D., Hypocholesterolemic effects of a flavonoid-rich extract of Hypericum perforatum L. in rats fed a cholesterol-rich diet. J. Agric. Food Chem., 53, 2462–2466 (2005).
  • 33) Igarashi, K., and Ohmuma, M., Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Biosci. Biotechnol. Biochem., 59, 595–601 (1995).
  • 34) Jacobs, S., Fridrich, D., Hofem, S., Pahlke, G., and Eisenbrand, G., Natural flavonoids are potent inhibitors of glycogen phosphorylase. Mol. Nutr. Food Res., 50, 52–57 (2006).
  • 35) Uehara, M., Chiba, H., Mogi, H., Suzuki, K., and Goto, S., Induction of increased phosphatidylcholine hydroperoxide by an iron-deficient diet in rats. J. Nutr. Biochem., 8, 385–391 (1997).
  • 36) Sato, S., Ultrastructural and morphometric studies of normal rat hepatocytes. J. Submicrosc. Cytol. Pathol., 36, 131–140 (2004).
  • 37) Morand, C., Crespy, V., Manach, C., Besson, C., Demigne, C., and Remesy, C., Plasma metabolites of quercetin and their antioxidant properties. Am. J. Physiol., 275, R212–R219 (1998).
  • 38) Murakami, A., Kitazono, Y., Jiwajinda, S., Koshimizu, K., and Ohigashi, H., Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation. Planta Med., 64, 319–323 (1998).
  • 39) Theriault, A., Wang, Q., Van Iderstine, S. C., Chen, B., Adrian, A., Franke, A. A., and Adeli, K., Modulation of hepatic lipoprotein synthesis and secretion by taxifolin, a plant flavonoid. J. Lipid Res., 41, 1969–1979 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.