250
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Short-Term Hyperhomocysteinemia-Induced Oxidative Stress Activates Retinal Glial Cells and Increases Vascular Endothelial Growth Factor Expression in Rat Retina

, , , , &
Pages 1203-1210 | Received 21 Nov 2006, Accepted 31 Jan 2007, Published online: 22 May 2014

  • 1) Cook, J. W., Taylor, L. M., Orloff, S. L., Landry, G. J., Moeta, G. L., and Porter, J. M., Homocysteine and arterial disease: experimental mechanisms. Vascul. Pharmacol., 38, 293–300 (2002).
  • 2) Temple, M. F., Luzier, A. B., and Kazierad, D. J., Homocysteine as a risk factor for atherosclerosis. Ann. Pharmacother., 34, 57–65 (2000).
  • 3) Looker, H. C., Fagot-Campagna, A., Gunter, E. W., Pfeiffer, C. M., Narayan, K. M., Knowler, W. C., and Hanson, R. L., Homocysteine as a risk factor for nephropathy and retinopathy in Type 2 diabetes. Diabetologia, 46, 766–772 (2003).
  • 4) Cahill, M. T., Stinnett, S. S., and Fekrat, S., Meta-analysis of plasma homocysteine, serum folate, serum vitamin B(12), and thermolabile MTHFR genotype as risk factors for retinal vascular occlusive disease. Am. J. Ophthalmol., 136, 1136–1150 (2003).
  • 5) Axer-Siegel, R., Bourla, D., Ehrlich, R., Dotan, G., Benjamini, Y., Gavendo, S., Weinberger, D., and Sela, B. A., Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am. J. Ophthalmol., 137, 84–89 (2004).
  • 6) Bleich, S., Junemann, A., von Ahsen, N., Lausen, B., Ritter, K., Beck, G., Naumann, G. O., and Kornhuber, J. S., Homocysteine and risk of open-angle glaucoma. J. Neural. Transm., 109, 1499–1504 (2002).
  • 7) Moore, P., El-Sherbeny, A., Roon, P., Schoenlein, P. V., Ganapathy, V., and Smith, S. B., Apoptotic cell death in the mouse retinal ganglion cell layer is induced in vivo by the excitatory amino acid homocysteine. Exp. Eye Res., 73, 45–57 (2001).
  • 8) Beatty, S., Koh, H., Phil, M., Henson, D., and Boulton, M., The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol., 45, 115–134 (2000).
  • 9) Eikelboom, J. W., Lonn, E., Genest, J. J., Hankey, G., and Yusuf, S., Homocysteine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann. Intern. Med., 131, 363–375 (1999).
  • 10) Kanani, P. M., Sinkey, C. A., Browning, R. L., Allaman, M., Knapp, H. R., and Haynes, W. G., Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst[e]inemia in humans. Circulation, 100, 1161–1168 (1999).
  • 11) Roybal, C. N., Yang, S., Sun, C. W., Hurtado, D., Vander Jagt, D. L., Townes, T. M., and Abcouwer, S. F., Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J. Biol. Chem., 279, 14844–14852 (2004).
  • 12) Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z., Vascular endothelial growth factor (VEGF) and its receptors. FASEB J., 13, 9–22 (1999).
  • 13) Wilkinson-Berka, J. L., Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cycoloxygenase-2 and nitric oxide. Curr. Pharm. Des., 10, 3331–3348 (2004).
  • 14) Ransom, B. R., and Orkand, R. K., Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends Neurosci., 19, 352–358 (1996).
  • 15) Kolb, H., Nelson, R., Ahnelt, P., and Cuenca, N., Cellular organization of the vertebrate retina. Prog. Brain Res., 131, 3–26 (2001).
  • 16) Newman, E. A., and Zahs, K. R., Modulation of neuronal activity by glial cells in the retina. J. Neurosci., 18, 4022–4028 (1998).
  • 17) Tsacopoulos, M., Poitry-Yamate, C. L., and Poitry, S., Ammonium and glutamate released by neurons are signals regulating the nutritive function of a glial cell. J. Neurosci., 17, 2383–2390 (1997).
  • 18) Lee, H., Kim, H., Kim, J., and Chang, N., Effects of dietary folic acid supplementation on cerebrovascular endothelial dysfunction in rats with induced hyperhomocysteinemia. Brain Res., 996, 139–147 (2004).
  • 19) Lee, H., Kim, J.-M., Kim, H., Lee, I., and Chang, N., Folic acid supplementation can reduce the endothelial damage in rat brain microvasculature due to hyperhomocysteinemia. J. Nutr., 135, 544–548 (2005).
  • 20) Reeves, P. G., Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr., 127, 838S–841S (1997).
  • 21) Araki, A., and Sako, Y., Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J. Chromatogr., 422, 43–52 (1987).
  • 22) Bieri, J. G., Tolliver, T. J., and Catignani, G. L., Simultaneous determination of α-tocopherol and retinol in plasma or red cells by high pressure liquid chromatography. Am. J. Clin. Nutr., 32, 2143–2149 (1979).
  • 23) Yagi, K., Lipid peroxides in hepatic, gastrointestinal, and pancreatic diseases. Adv. Exp. Med. Biol., 366, 165–169 (1994).
  • 24) Li, D., and Mehta, J. L., Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation, 101, 2889–2895 (2000).
  • 25) Cominacini, L., Pasini, A. F., Garbin, U., Davoli, A., Tosetti, M. L., Campagnola, M., Rigoni, A., Pastorino, A. M., Lo Cascio, V., and Sawamura, T., Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J. Biol. Chem., 275, 12633–12638 (2000).
  • 26) Cominacini, L., Rigoni, A., Pasini, A. F., Garbin, U., Davoli, A., Campagnola, M., Pastorino, A. M., Lo Cascio, V., and Sawamura, T., The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J. Biol. Chem., 276, 13750–13755 (2001).
  • 27) Reichenbach, A., and Robinson, S. R., The involvement of Müller cells in the outer retina. In “Neurobiology and Clinical Aspects of the Outer Retina,” eds. Djamgoz, M. B. A., Archer, S. N., and Vallerga, S., Chapman and Hall, London, pp. 395–416 (1995).
  • 28) Schnitzer, J., Astrocytes in mammalian retina. Prog. Ret. Res., 7, 209–232 (1988).
  • 29) Newman, E., and Reichenbach, A., The Müller cells: a functional element of the retina. Trends Neurosci., 19, 307–312 (1996).
  • 30) Kettenmann, H., Beyond the neuronal circuitry. Trends Neurosci., 19, 305–306 (1996).
  • 31) Ogden, T. E., Nerve fiber layer astrocytes of the primate retina: morphology, distribution, and density. Invest. Ophthalmol. Vis. Sci., 17, 499–510 (1978).
  • 32) Ramirez, J. M., Trivino, A., Ramirez, A. I., Salazar, J. J., and Garcia-Sanchez, J., Structural specializations of human retinal glial cells. Vision Res., 36, 2029–2036 (1996).
  • 33) Aschner, M., Astrocytic functions and physiological reactions to injury: the potential to induce and/or exacerbate neuronal dysfunction. Neurotoxicology, 19, 7–17 (1998).
  • 34) Eddleston, M., and Mucke, L., Molecular profile of reactive astrocytes: implications for their role in neurologic disease. Neuroscience, 54, 15–36 (1993).
  • 35) Hatten, M. E., Liem, R. K., Shelanski, M., and Mason, C. A., Astroglia in CNS injury. Glia, 4, 233–243 (1991).
  • 36) Lewis, G. P., and Fishe, S. K., Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int. Rev. Cytol., 230, 263–290 (2003).
  • 37) Mitrovic, B., Ignarro, L. J., Montestruque, S., Smoll, A., and Merrill, J. E., Nitric oxide as a potential pathological mechamism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience, 61, 575–585 (1994).
  • 38) Brew, H., and Attwell, D., Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature, 327, 707–709 (1987).
  • 39) Marc, R. E., The structure of GABAergic circuits in ectotherm retinas. In “GABA in the Retina and Central Visual System,” eds. Mize, R., Marc, R. E., and Sillito, A., Elsevier, Amsterdam, pp. 61–92 (1992).
  • 40) Winkler, B. S., Arnold, M. J., Brassell, M. A., and Puro, D. G., Energy metabolism in human retinal Müller cells. Invest. Ophthalmol. Vis. Sci., 41, 3183–3190 (2000).
  • 41) Wall, R. T., Harlan, J. M., Harker, L. A., and Striker, G. E., Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb. Res., 18, 113–121 (1980).
  • 42) Tsai, J. C., Perrella, M. A., Yoshizumi, M., Hsieh, C. M., Haber, E., Schlegel, R., and Lee, M. E., Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc. Natl. Acad. Sci., 91, 6369–6373 (1994).
  • 43) Al-Obaidi, M. K., Philippou, H., Stubbs, P. J., Adami, A., Amersey, R., Noble, M. M., and Lane, D. A., Relationships between homocysteine, factor VIIa, and thrombin generation in acute coronary syndrome. Circulation, 101, 372–377 (2000).
  • 44) Connolly, D. T., Heuvelman, D. M., Nelson, R., Olander, J. V., Eppley, B. L., Delfino, J. J., Siegel, N. R., Leimgruber, R. M., and Feder, J., Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J. Clin. Invest., 84, 1470–1478 (1989).
  • 45) Maeda, M., Yamamoto, I., Fujio, Y., and Azuma, J., Homocysteine induces vascular endothelial growth factor expression in differentiated THP-1 macrophages. Biochim. Biophys. Acta, 1623, 41–46 (2003).
  • 46) Roybal, C. N., Yang, S., Sun, C. W., Hurtado, D., Vander Jagt, D. L., Townes, T. M., and Abcouwer, S. F., Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J. Biol. Chem., 279, 14844–14852 (2004).
  • 47) Kuroki, M., Voest, E. E., and Amano, S., Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J. Clin. Invest., 98, 1667–1675 (1996).
  • 48) Qaum, T., Xu, Q., Joussen, A. M., Clemens, M. W., Qin, W., Miyamoto, K., Hassessian, H., Wiegand, S. J., Rudge, J., Yancopoulos, G. D., and Adamis, A. P., VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest. Ophthalmol. Vis. Sci., 42, 2408–2413 (2001).
  • 49) Biousse, V., Newman, N. J., and Sternberg, P. J., Retinal vein occlusion and transient monocular visual loss associated with hyperhomocystinemia. Am. J. Ophthalmol., 124, 257–260 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.