525
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Cocoa and Polydextrose on Bacterial Fermentation in Gastrointestinal Tract Simulations

, , , , , & show all
Pages 1834-1843 | Received 18 Dec 2006, Accepted 24 Apr 2007, Published online: 22 May 2014

  • 1) Hermann, F., Spieker, L. E., Ruschitzka, F., Sudano, I., Hermann, M., Binggeli, C., Luscher, T. F., Riesen, W., Noll, G., and Corti, R., Dark chocolate improves endothelial and platelet function. Heart, 92, 119–120 (2006).
  • 2) Grassi, D., Necozione, S., Lippi, C., Croce, G., Valeri, L., Pasqualetti, P., Desideri, G., Blumberg, J. B., and Ferri, C., Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension, 46, 398–405 (2005).
  • 3) Vlachopoulos, C., Aznaouridis, K., Alexopoulos, N., Economou, E., Andreadou, I., and Stefanadis, C., Effect of dark chocolate on arterial function in healthy individuals. Am. J. Hypertens., 18, 785–791 (2005).
  • 4) Mursu, J., Voutilainen, S., Nurmi, T., Rissanen, T. H., Virtanen, J. K., Kaikkonen, J., Nyyssonen, K., and Salonen, J. T., Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic. Biol. Med., 37, 1351–1359 (2004).
  • 5) Hegsted, D. M., McGandy, R. B., Myers, M. L., and Stare, F. J., Quantitative effects of dietary fat on serum cholesterol in man. Am. J. Clin. Nutr., 17, 281–295 (1965).
  • 6) Kris-Etherton, P. M., and Mustad, V. A., Chocolate feeding studies: a novel approach for evaluating the plasma lipid effects of stearic acid. Am. J. Clin. Nutr., 60, 1029S–1036S (1994).
  • 7) Wan, Y., Vinson, J. A., Etherton, T. D., Proch, J., Lazarus, S. A., and Kris-Etherton, P. M., Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am. J. Clin. Nutr., 74, 596–602 (2001).
  • 8) Fooks, L. J., Fuller, R., and Gibson, G. R., Prebiotics, probiotics and human gut microbiology. Int. Dairy J., 9, 53–61 (1999).
  • 9) Gibson, G. R., and Roberfroid, M. B., Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 125, 1401–1412 (1995).
  • 10) Gibson, G. R., Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. Am. Soc. Nutr. Sci., Suppl., 1438s–1441s (1999).
  • 11) Probert, H. M., Apajalahti, J. H., Rautonen, N., Stowell, J., and Gibson, G. R., Polydextrose, lactitol, and fructo-oligosaccharide fermentation by colonic bacteria in a three-stage continuous culture system. Appl. Environ. Microb., 70, 4505–4511 (2004).
  • 12) Jie, Z., Bang-Yao, L., Ming-Jie, X., Hai-Wei, L., Zu-Kang, Z., Ting-Song, W., and Craig, S. A., Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am. J. Clin. Nutr., 72, 1503–1509 (2000).
  • 13) Mäkivuokko, H., Nurmi, J., Nurminen, P., Stowell, J., and Rautonen, N., In vitro effects on polydextrose by colonic bacteria and Caco-2 cell cyclooxygenase gene expression. Nutr. Cancer, 52, 94–104 (2005).
  • 14) Morelli, L., Zonenschain, D., Callegari, M. L., Grossi, E., Maisano, F., and Fusillo, M., Assessment of a new synbiotic preparation in healthy volunteers: survival, persistence of probiotic strains and its effect on the indigenous flora. Nutr. J., 2, 11 (2003).
  • 15) Bartosch, S., Woodmansey, E. J., Paterson, J. C., McMurdo, M. E., and Macfarlane, G. T., Microbiological effects of consuming a synbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria. Clin. Infect. Dis., 40, 28–37 (2005).
  • 16) Andoh, A., Tsujikawa, T., and Fujiyama, Y., Role of dietary fiber and short-chain fatty acids in the colon. Curr. Pharm. Des., 9, 347–358 (2003).
  • 17) Polan, C. E., McNeill, J. J., and Tove, S. B., Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol., 88, 1056–1064 (1964).
  • 18) Wood, R. D., Bell, M. C., Grainger, R. B., and Teekel, R. A., Metabolism of labeled linoleic-1-C14 acid in the sheep rumen. J. Nutr., 79, 62–68 (1963).
  • 19) Fujimoto, K., Kimoto, H., Shishikura, M., Endo, Y., and Ogimoto, K., Biohydrogenation of linoleic acid by anaerobic bacteria isolated from rumen. Biosci. Biotechnol. Biochem., 57, 1026–1027 (1993).
  • 20) Hashim, S. A., and Babayan, V. K., Studies in man of partially absorbed dietary fats. Am. J. Clin. Nutr., 31, S273–S276 (1978).
  • 21) Nelson, S. E., Rogers, R. R., Frantz, J. A., and Ziegler, E. E., Palm olein in infant formula: absorption of fat and minerals by normal infants. Am. J. Clin. Nutr., 64, 291–296 (1996).
  • 22) Howard, F. A., and Henderson, C., Hydrogenation of polyunsaturated fatty acids by human colonic bacteria. Lett. Appl. Microbiol., 29, 193–196 (1999).
  • 23) Valiente, C., Esteban, R. M., Martin, M. A., Molla, E., and Lopez-Andreu, F. J., Study of the dietary fibre content in cocoa. Eur. J. Clin. Nutr., 49(Suppl 3), S222–S223 (1995).
  • 24) Kamiwaki, T., Tsuji, K., and Nakagawa, Y., Effects of dietary fiber from cacao bean on blood pressure and lipid metabolism in spontaneously hypertensive rats. Nippon Shokuhin Kagaku Kougaku Kaishi, 46, 581–586 (1999).
  • 25) Valsta, L. M., Food-based dietary guidelines for Finland: a staged approach. Br. J. Nutr., 81(Suppl 2), S49–S55 (1999).
  • 26) Fuller, M. F., “In Vitro Digestion for Pigs and Poultry,” C.A.B. International, Oxfordshire (1991).
  • 27) Apajalahti, J. H., Kettunen, H., Kettunen, A., Holben, W. E., Nurminen, P. H., Rautonen, N., and Mutanen, M., Culture-independent microbial community analysis reveals that inulin in the diet primarily affects previously unknown bacteria in the mouse cecum. Appl. Environ. Microb., 68, 4986–4995 (2002).
  • 28) Saarinen, M. T., Determination of biogenic amines as dansyl derivatives in intestinal digesta and feces by reversed phase HPLC. Chromatographia, 55, 297–300 (2002).
  • 29) El-Hamdy, A. H., and Christie, W. W., Preparation of methyl esters of fatty acids with trimethylsulphonium hydroxide - an appraisal. J. Chrom., 630, 438–441 (1993).
  • 30) Kaluzny, M. A., Duncan, L. A., Merritt, M. V., and Epps, D. E., Rapid separation of lipid classes in high yield and purity using bonded phase columns. J. Lipid Res., 26, 135–140 (1985).
  • 31) Miller, G. L., Use of dinitrosalycylic acid reagent for determination of reducing sugar. Anal. Chem., 31, 426–428 (1959).
  • 32) Shahkhalili, Y., Duruz, E., and Acheson, K., Digestibility of cocoa butter from chocolate in humans: a comparison with corn-oil. Eur. J. Clin. Nutr., 54, 120–125 (2000).
  • 33) Macfarlane, G. T., Gibson, G. R., and Cummings, J. H., Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol., 72, 57–64 (1992).
  • 34) Macfarlane, S., and Macfarlane, G. T., Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 62, 67–72 (2003).
  • 35) Priebe, M. G., Vonk, R. J., Sun, X., He, T., Harmsen, H. J., and Welling, G. W., The physiology of colonic metabolism. Possibilities for interventions with pre- and probiotics. Eur. J. Nutr., 41(Suppl 1), I2–10 (2002).
  • 36) Mortensen, P. B., and Clausen, M. R., Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand. J. Gastroenterol. Suppl., 216, 132–148 (1996).
  • 37) Sakata, T., Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br. J. Nutr., 58, 95–103 (1987).
  • 38) Roediger, W. E., Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 21, 793–798 (1980).
  • 39) Kamitani, H., Geller, M., and Eling, T., Expression of 15-lipoxygenase by human colorectal carcinoma Caco-2 cells during apoptosis and cell differentiation. J. Biol. Chem., 273, 21569–21577 (1998).
  • 40) Litvak, D. A., Evers, B. M., Hwang, K. O., Hellmich, M. R., Ko, T. C., and Townsend, C. M., Jr., Butyrate-induced differentiation of Caco-2 cells is associated with apoptosis and early induction of p21Waf1/Cip1 and p27Kip1. Surgery, 124, 161–169 (1998).
  • 41) Marteau, P., Minekus, M., Havenaar, R., and Huis in‘t Veld, J., Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J. Dairy Sci., 80, 1031–1037 (1997).
  • 42) Fuller, M. F., and Tome, D., In vivo determination of amino acid bioavailability in humans and model animals. J. AOAC Int., 88, 923–934 (2005).
  • 43) EFSA, Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on the request from the Commission related to nutrition claims concerning omega-3 fatty acids, monounsaturated dat, polyunsaturated fat and unsaturated fat. EFSA J., 253, 1–29 (2005).
  • 44) Shahkhalili, Y., Murset, C., Meirim, I., Duruz, E., Guinchard, S., Cavadini, C., and Acheson, K., Calcium supplementation of chocolate: effect on cocoa butter digestibility and blood lipids in humans. Am. J. Clin. Nutr., 73, 246–252 (2001).
  • 45) Molly, K., Vande, W. M., and Verstraete, W., Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microb. Biotechnol., 39, 254–258 (1993).
  • 46) Gibson, G. R., Cummings, J. H., and Macfarlane, G. T., Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environ. Microb., 54, 2750–2755 (1988).
  • 47) Minekus, M., Marteau, P., Havenaar, R., and Huis in‘t Veld, J. H. J., A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA, 23, 197–209 (1995).
  • 48) Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., Alric, M., Fonty, G., and Huis in‘t Veld, J. H. J., A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microb. Biotechnol., 53, 108–114 (1999).
  • 49) Mäkivuokko, H., Saarinen, M., Ouwehand, A., and Rautonen, N., Effects of lactose on colon microbial community structure and function in a four-stage semi-continuous culture system. Biosci. Biotechnol. Biochem., 70, 2056–2063 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.