356
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Systematic Analysis of Aggregates from 38 Kinds of Non Disease-Related Proteins: Identifying the Intrinsic Propensity of Polypeptides to Form Amyloid Fibrils

, &
Pages 1313-1321 | Received 25 Dec 2006, Accepted 06 Feb 2007, Published online: 22 May 2014

  • 1) Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D., and Dobson, C. M., Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA, 95, 4224–4228 (1998).
  • 2) Litvinovich, S. V., Brew, S. A., Aota, S., Akiyama, S. K., Haudenschild, C., and Ingham, K. C., Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. J. Mol. Biol., 280, 245–258 (1998).
  • 3) Fandrich, M., Fletcher, M. A., and Dobson, C. M., Amyloid fibrils from muscle myoglobin. Nature, 410, 165–166 (2001).
  • 4) Fandrich, M., and Dobson, C. M., The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J., 21, 5682–5690 (2002).
  • 5) Krebs, M. R., Wilkins, D. K., Chung, E. W., Pitkeathly, M. C., Chamberlain, A. K., Zurdo, J., Robinson, C. V., and Dobson, C. M., Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J. Mol. Biol., 300, 541–549 (2000).
  • 6) Chiti, F., Bucciantini, M., Capanni, C., Taddei, N., Dobson, C. M., and Stefani, M., Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Sci., 10, 2541–2547 (2001).
  • 7) Yutani, K., Takayama, G., Goda, S., Yamagata, Y., Maki, S., Namba, K., Tsunasawa, S., and Ogasahara, K., The process of amyloid-like fibril formation by methionine aminopeptidase from a hyperthermophile, Pyrococcus furiosus. Biochemistry, 39, 2769–2777 (2000).
  • 8) Hamada, D., and Dobson, C. M., A kinetic study of beta-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci., 11, 2417–2426 (2002).
  • 9) Uegaki1, K., Nakamura, T., Yamamoto, H., Kobayashi, A., Odahara, T., Harata, K., Hagihara, Y., Ueyama, N., Yamazaki, T., and Yumoto, N., Amyloid fibril formation by the CAD domain of caspase-activated DNase. Biopolymers, 79, 39–47 (2005).
  • 10) Rochet, J. C., and Lansbury, P. T., Jr., Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol., 10, 60–68 (2000).
  • 11) Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., and Blake, C. C., Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol., 273, 729–739 (1997).
  • 12) Naiki, H., Higuchi, K., Hosokawa, M., and Takeda, T., Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal. Biochem., 177, 244–249 (1989).
  • 13) Klunk, W. E., Pettegrew, J. W., and Abraham, D. J., Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J. Histochem. Cytochem., 37, 1273–1281 (1989).
  • 14) Kisiday, J., Jin, M., Kurz, B., Hung, H., Semino, C., Zhang, S., and Grodzinsky, A. J., Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. USA, 99, 9996–10001 (2002).
  • 15) Kasai, S., Ohga, Y., Mochizuki, M., Nishi, N., Kadoya, Y., and Nomizu, M., Multifunctional peptide fibrils for biomedical materials. Biopolymers, 76, 27–33 (2004).
  • 16) Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C. M., Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl. Acad. Sci. USA, 96, 3590–3594 (1999).
  • 17) Srisailam, S., Wang, H. M., Kumar, T. K., Rajalingam, D., Sivaraja, V., Sheu, H. S., Chang, Y. C., and Yu, C., Amyloid-like fibril formation in an all beta-barrel protein involves the formation of partially structured intermediate(s). J. Biol. Chem., 277, 19027–19036 (2002).
  • 18) Khurana, R., Uversky, V. N., Nielsen, L., and Fink, A. L., Is Congo red an amyloid-specific dye? J. Biol. Chem., 276, 22715–22721 (2001).
  • 19) Konno, T., Murata, K., and Nagayama, K., Amyloid-like aggregates of a plant protein: a case of a sweet-tasting protein, monellin. FEBS Lett., 454, 122–126 (1999).
  • 20) Jiao, Y., and Schaffer, T. E., Accurate height and volume measurements on soft samples with the atomic force microscope. Langmuir, 20, 10038–10045 (2004).
  • 21) Serpell, L. C., Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta, 1502, 16–30 (2000).
  • 22) Serpell, L. C., Sunde, M., Benson, M. D., Tennent, G. A., Pepys, M. B., and Fraser, P. E., The protofilament substructure of amyloid fibrils. J. Mol. Biol., 300, 1033–1039 (2000).
  • 23) Kad, N. M., Myers, S. L., Smith, D. P., Alastair Smith, D., Radford, S. E., and Thomson, N. H., Hierarchical assembly of beta(2)-microglobulin amyloid in vitro revealed by atomic force microscopy. J. Mol. Biol., 330, 785–797 (2003).
  • 24) Katou, H., Kanno, T., Hoshino, M., Hagihara, Y., Tanaka, H., Kawai, T., Hasegawa, K., Naiki, H., and Goto, Y., The role of disulfide bond in the amyloidogenic state of beta(2)-microglobulin studied by heteronuclear NMR. Protein Sci., 11, 2218–2229 (2002).
  • 25) Ohhashi, Y., Hagihara, Y., Kozhukh, G., Hoshino, M., Hasegawa, K., Yamaguchi, I., Naiki, H., and Goto, Y., The intrachain disulfide bond of beta(2)-microglobulin is not essential for the immunoglobulin fold at neutral pH, but is essential for amyloid fibril formation at acidic pH. J. Biochem. (Tokyo), 131, 45–52 (2002).
  • 26) Song, Y., Schowen, R. L., Borchardt, R. T., and Topp, E. M., Effect of ‘pH’ on the rate of asparagine deamidation in polymeric formulations: ‘pH’-rate profile. J. Pharm. Sci., 90, 141–156 (2001).
  • 27) Li, A., Sowder, R. C., Henderson, L. E., Moore, S. P., Garfinkel, D. J., and Fisher, R. J., Chemical cleavage at aspartyl residues for protein identification. Anal. Chem., 73, 5395–5402 (2001).
  • 28) Ahern, T. J., and Klibanov, A. M., The mechanisms of irreversible enzyme inactivation at 100 °C. Science, 228, 1280–1284 (1985).
  • 29) Zale, S. E., and Klibanov, A. M., Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry, 25, 5432–5444 (1986).
  • 30) Frare, E., Polverino De Laureto, P., Zurdo, J., Dobson, C. M., and Fontana, A., A highly amyloidogenic region of hen lysozyme. J. Mol. Biol., 340, 1153–1165 (2004).
  • 31) Hirota Nakaoka, N., Hasegawa, K., Naiki, H., and Goto, Y., Dissolution of beta2-microglobulin amyloid fibrils by dimethylsulfoxide. J. Biochem. (Tokyo), 134, 159–164 (2003).
  • 32) Kheterpal, I., Zhou, S., Cook, K. D., and Wetzel, R., Abeta amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc. Natl. Acad. Sci. USA, 97, 13597–13601 (2000).
  • 33) Fandrich, M., Forge, V., Buder, K., Kittler, M., Dobson, C. M., and Diekmann, S., Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc. Natl. Acad. Sci. USA, 100, 15463–15468 (2003).
  • 34) Zurdo, J., Guijarro, J. I., Jimenez, J. L., Saibil, H. R., and Dobson, C. M., Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. J. Mol. Biol., 311, 325–340 (2001).
  • 35) Cardoso, I., Goldsbury, C. S., Muller, S. A., Olivieri, V., Wirtz, S., Damas, A. M., Aebi, U., and Saraiva, M. J., Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils. J. Mol. Biol., 317, 683–695 (2002).
  • 36) Smith, D. P., Jones, S., Serpell, L. C., Sunde, M., and Radford, S. E., A systematic investigation into the effect of protein destabilisation on beta 2-microglobulin amyloid formation. J. Mol. Biol., 330, 943–954 (2003).
  • 37) Martsev, S. P., Dubnovitsky, A. P., Vlasov, A. P., Hoshino, M., Hasegawa, K., Naiki, H., and Goto, Y., Amyloid fibril formation of the mouse V(L) domain at acidic pH. Biochemistry, 41, 3389–3395 (2002).
  • 38) Konno, T., Multistep nucleus formation and a separate subunit contribution of the amyloidgenesis of heat-denatured monellin. Protein Sci., 10, 2093–2101 (2001).
  • 39) Xie, M., and Schowen, R. L., Secondary structure and protein deamidation. J. Pharm. Sci., 88, 8–13 (1999).
  • 40) Dobson, C. M., Protein folding and disease: a view from the first Horizon Symposium. Nat. Rev. Drug Discov., 2, 154–160 (2003).
  • 41) Sacchettini, J. C., and Kelly, J. W., Therapeutic strategies for human amyloid diseases. Nat. Rev. Drug Discov., 1, 267–275 (2002).
  • 42) Heegaard, N. H., Roepstorff, P., Melberg, S. G., and Nissen, M. H., Cleaved beta 2-microglobulin partially attains a conformation that has amyloidogenic features. J. Biol. Chem., 277, 11184–11189 (2002).
  • 43) Heegaard, N. H., Jorgensen, T. J., Rozlosnik, N., Corlin, D. B., Pedersen, J. S., Tempesta, A. G., Roepstorff, P., Bauer, R., and Nissen, M. H., Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta 2-microglobulin. Biochemistry, 44, 4397–4407 (2005).
  • 44) Corlin, D. B., Sen, J. W., Ladefoged, S., Lund, G. B., Nissen, M. H., and Heegaard, N. H., Quantification of cleaved beta2-microglobulin in serum from patients undergoing chronic hemodialysis. Clin. Chem., 51, 1177–1184 (2005).
  • 45) Esposito, G., Michelutti, R., Verdone, G., Viglino, P., Hernandez, H., Robinson, C. V., Amoresano, A., Dal Piaz, F., Monti, M., Pucci, P., Mangione, P., Stoppini, M., Merlini, G., Ferri, G., and Bellotti, V., Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci., 9, 831–845 (2000).
  • 46) Monti, M., Amoresano, A., Giorgetti, S., Bellotti, V., and Pucci, P., Limited proteolysis in the investigation of beta2-microglobulin amyloidogenic and fibrillar states. Biochim. Biophys. Acta, 1753, 44–50 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.