374
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Production of Ethyl (R)-2-Hydroxy-4-phenylbutanoate via Reduction of Ethyl 2-Oxo-4-phenylbutanoate in an Interface Bioreactor

, , &
Pages 1762-1767 | Received 12 May 1998, Published online: 22 May 2014

  • 1) Ondetti, M. A. and Cushman, D. W., Inhibition of the renin-angiotensin system. A new approach to the therapy of hypertension. J. Med. Chem., 24, 355-361 (1981).
  • 2) Maruyama, S., Nakagomi, K., Tomizuka, N., and Suzuki, H., Angiotensin I-converting enzyme inhibitor derived from an enzymatic hydrolysate of casein. II. Isolation and bradykinin-potentiating activity on the ileum of rats. Agric. Biol. Chem., 49, 1405-1409 (1985).
  • 3) Iwasaki, G., Kimura, R.,Numao, N., and Kondo, K., A practical and diastereoselective synthesis of angiotensin converting enzyme inhibitors. Chem. Pharm. Bull., 37, 280-283 (1989).
  • 4) Yamamoto, K. and Ootsubo, K., Japan Kokai Tokkyo Koho, 192190 (Aug. 3, 1993).
  • 5) Nohira, H., Oonishi, T., Yamamoto, K., and Kumagai, N., Japan Kokai Tokkyo Koho, 204838 (Sep. 6, 1991).
  • 6) a) Ito, M. and Kobayashi, Y., Japan Kokai Tokkyo Koho, 281098 (Nov. 13, 1989).
  • 6) b) Miyata, A. and Sato, H., Japan Kokai Tokkyo Koho, 225499 (Sep. 8, 1989).
  • 7) a) Sugai, T. and Ohta, H., Japan Kokai Tokkyo Koho, 200391 (July 21, 1992).
  • 7) b) Sugai, T. and Ohta, H., A simple preparation of (R)-2-hydroxy-4-phenylbutanoic acid. Agric. Biol. Chem., 55, 293-294 (1991).
  • 8) a) Bradshaw, C. W., Wong, C.-H., Hummel, W., and Kula, M.-R., Enzyme-catalyzed asymmetric synthesis of (S)-2-amino-4-phenylbutanoic acid and (R)-2-hydroxy-4-phenylbutanoic acid. Bioorg. Chem., 19, 29-39 (1991).
  • 8) b) Nikaido, T., Matsuyama, A., Ito, M., Kobayashi, Y., and Oonishi, H., Stereoselective reduction of 2-oxo-4-phenylbutanoate to (R)-2-hydroxy-4-phenylbutanoate with microbial cells. Biosci. Biotech. Biochem., 56, 2066-2067 (1992).
  • 9) Dao, D. H., Kawai, Y., Hida, K., Hornes, S., Nakamura, K., Ohno, A., Okamura, M., and Akasaka, T., Stereochemical control in microbial reduction. 30. Reduction of alkyl 2-oxo-4-phenylbutyrate as precursors of angiotensin converting enzyme (ACE) inhibitors. Bull. Chem. Soc. Jpn., 71, 425-432 (1998).
  • 10) a) Oda, S. and Ohta, H., Microbial transformation on interface between hydrophilic carriers and hydrophobic organic solvents. Biosci. Biotech. Biochem., 56, 2041-2045 (1992).
  • 10) b) Oda, S. and Ohta, H., Interface bioreactor: Bioconversion process on an interface between an organic solvent and a polymer gel. J. Jpn. Soc. Colour Material (in Japanese), 70, 538-546 (1997).
  • 11) a) Oda, S., Inada, Y., Kato, A., Matsudomi, N., and Ohta, H., Production of (S)-citronellic acid and (R)-citronellol with an interface bioreactor. J. Ferment. Bioeng., 80, 559-564 (1995).
  • 11) b) Oda, S., Kato, A., Matsudomi, N., and Ohta, H., Enantioselective oxidation of racemic citronellol with an interface bioreactor. Biosci. Biotech. Biochem., 60, 83-87 (1996).
  • 12) Sugai, T., Katoh, O., and Ohta, H., Chemo-enzymatic synthesis of (R,R)-(-)-pyrenophorin. Tetrahedron, 51, 11987-11998 (1995).
  • 13) Oda, S., Tanaka, J., and Ohta, H., Interface bioreactor packed with synthetic polymer pad: Application to hydrolysis of neat 2-ethylhexyl acetate. J. Ferment. Bioeng., 86, 84-89 (1998).
  • 14) a) Hegeman, G. D., Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. J. Bacteriol., 9, 1140-1154 (1966).
  • 14) b) Vakeria, D., Vivian, A., and Fewson, C. A., Isolation, characterization and mapping of mandelate pathway mutants of Acinetobacter calcoaceticus. J. Gen. Microbiol., 130, 2893-2903 (1984).
  • 15) Oda, S., Kikuchi, Y., and Nanishi, Y., Synthesis of optically active mandelic acid via microbial oxidation of racemic 1-phenyl-1,2-ethanediol. Biosci. Biotech. Biochem., 56, 1216-1220 (1992).
  • 16) Oda, S., Kato, A., Matsudomi, N., and Ohta, H., Production of aliphatic carboxylic acids via microbial oxidation of 1-alkanols with interface bioreactor. J. Ferment. Bioeng., 78, 149-154 (1994).
  • 17) a) Yadav, B. S., Osumi, K., Amemura, A., and Harada, T., Multiple forms of NAD-dependent alcohol dehydrogenase in Hansenula miso IFO 0146 capable of growing on ethanol: Occurrence of an inducible alcohol dehydrogenase. J. Ferment. Technol., 57, 244-247 (1979).
  • 17) b) Simpfessel, L., Presence and regulation of the synthesis of two alcohol dehydrogenases from Saccharomyces cerevisiae. Biochim. Biophys. Acta, 151, 317-329 (1968).
  • 17) c) Fowler, P. W., Ball, A. J. S., and Grifiths, D. E., The control of alcohol dehydrogenase isozyme synthesis in Saccharomyces cerevisiae. Can. J. Biochem., 50, 35-43 (1972).
  • 18) a) Oda, S., Inada, Y., Kobayashi, A., Kato, A., Matsudomi, N., and Ohta, H., Coupling of metabolism and bioconversion: Microbial esterification of citronellol with acetyl coenzyme A produced via metabolism of glucose in an interface bioreactor. Appl. Environ. Microbiol., 62, 2216-2220 (1996).
  • 18) b) Oda, S. and Ohta, H., Double coupling of acetyl coenzyme A production and microbial esterification with alcohol acetyltransferase in an interface bioreactor. J. Ferment. Bioeng., 83, 423-428 (1997).
  • 19) Oda, S. and Ohta, H., Alleviation of toxicity of poisonous organic compounds on hydrophilic carrier/hydrophobic organic solvent interface. Biosci. Biotech. Biochem., 56, 1515-1517 (1992).
  • 20) Schmidt, E., Ghisalba, O., Gygax, D., and Sedelmeier, G., Optimization of a process for the production of (R)-2-hydroxy-4-phenylbutyric acid: An intermediate for inhibitors of angiotensin converting enzyme. J. Biotechnol., 24, 315-327 (1992).
  • 21) a) Kawai, Y., Kondo, S., Tsujimoto, M., Nakamura, K., and Ohno, A., Stereochemical control in microbial reduction. XXIII. Thermal treatment of bakers’ yeast for controlling the stereoselectivity of reductions. Bull. Chem. Soc. Jpn., 67, 2244-2247 (1994).
  • 21) b) Kawai, Y., Takanobe, K., and Ohno, A., Stereochemical control in microbial reduction. XXV. Additives controlling diastereoselectivity in a microbial reduction of ethyl 2-methyl-3-oxobutanoate. Bull. Chem. Soc. Jpn., 68, 285-288 (1995).
  • 22) Ishihara, K., Higashi, Y., Tsuboi, S., and Utaka, M., Effects of additives in the reduction using bakers’ yeast cell-free extract. Chem. Lett., 1995, 253-254.
  • 23) Nakamura, K., Kawai, Y., Oka, S., and Ohno, A., Stereochemical control in microbial reduction. 8. Stereochemical control in microbial reduction of β-keto esters. Bull. Chem. Soc. Jpn., 62, 875-879 (1989).
  • 24) Jayasinghe, L. Y., Koditsuwakku, D., Smallridge, A. J., and Trewhella, M. A., The use of organic solvent systems in the yeast mediated reduction of ethyl acetoacetate. Bull. Chem. Soc. Jpn., 67, 2528-2531 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.