134
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Enhancing Effect of β-Lactoglobulin on the Antioxidative Activity of α-Tocopherol in an Emulsion of Linoleic Acid

, &
Pages 1912-1916 | Received 13 Apr 1998, Published online: 22 May 2014

  • 1) Karel, M., Tannenbaum, S. R., Wallace, D. H., and Maloney, H., Autoxidation of methyl linoleate in freeze-dried model systems. III. Effects of added amino acids. J. Food Sci., 31, 892-896 (1966).
  • 2) Farag, R. S., Osman, S. A., Hallabo, S. A. S., Girgis, A. N., and Nasr, A. A., Linoleic acid oxidation catalyzed by various amino acids and cupric ions in freeze-dried model systems. J. Am. Oil Chem. Soc., 55, 708-710 (1978).
  • 3) Iwami, K., Hattori, M., and Ibuki, F., Prominent antioxidant effect of wheat gliadin on linoleate peroxidation in powder model systems at high water activity. J. Agric. Food Chem., 35, 628-631 (1987).
  • 4) Nakamura, S., Kato, A., and Kobayashi, K., Enhanced antioxidative effect of ovalbumin due to covalent binding of polysaccharides. J. Agric. Food. Chem., 40, 2033-2037 (1992).
  • 5) Farag, R. S., Osman, S. A., Hallabo, S. A. S., and Nasr, A. A., Linoleic acid oxidation catalyzed by amino acids and cupric ions in aqueous media. J. Am. Oil Chem. Soc., 55, 703-707 (1978).
  • 6) Taylor, M. J., and Richardson, T., Antioxidant activity of cysteine and protein sulfhydryls in a linoleate emulsion oxidized by hemoglobin. J. Food Sci., 45, 1223-1227 (1980).
  • 7) Yamamoto, Y., Kato, E., and Ando, A., Increased antioxidative activity of ovalbumin by heat treating in an emulsion of linoleic acid. Biosci. Biotech. Biochem., 60, 1430-1433 (1996).
  • 8) Kanazawa, K., Ashida, H., and Natake, M., Autoxidizing process interaction of linoleic acid with casein. J. Food Sci., 52, 475-478 (1987).
  • 9) Gopala Krishna, A. G., and Prabhakar, J. V., Antioxidant efficacy of amino acids in methyl linoleate at different relative humidities. J. Am. Oil Chem. Soc., 71, 645-647 (1994).
  • 10) El-Negoumy, A. M., and Ku, P. S., Effect of L-cysteine, whole casein, κ-casein, nordihydroguaiaretic acid (NDGA) and α-tocopherol on the oxidative behavior of some milk lipid fractions in model systems. J. Dairy Sci., 51, 928 (1968).
  • 11) Yamaguchi, N., Naito, S., Yokoo, Y., and Fujimaki, M., Application of protein hydrolyzate to biscuit as antioxidant. J. Jpn. Soc. Food Sci. Technol., 27, 56-59 (1980).
  • 12) Asakawa, T., and Matsushita, S., Changes of lipids and proteins in dried foods during storage. J. Jpn. Soc. Nutr. Food Sci., 31, 557-564 (1978).
  • 13) Pratt, D. E., Water soluble antioxidant activity in soybeans. J. Food Sci., 37, 322-323 (1972).
  • 14) Yukami, S., Autoxidation of sodium linoleate in a protein solution. Agric. Biol. Chem., 36, 871-874 (1972).
  • 15) Rhee, K. S., Ziprin, Y. A., and Rhee, K. C., Water-soluble antioxidant activity of oilseed protein derivatives in model lipid peroxidation systems of meat. J. Food Sci., 44, 1132-1135 (1979).
  • 16) Wang, J. Y., Fujimoto, K., Miyazawa, T., and Endo, Y., Antioxidative mechanism of maize zein in powder model systems against methyl linoleate: Effect of water activity and coexistence of antioxidants. J. Agric. Food Chem., 39, 351-355 (1991).
  • 17) Morr, C. V. and Forgeding, E. A., Composition and functionality of commercial whey and milk protein concentrates. Food Technol., 44, 100-112 (1990).
  • . 1994. p. 325- 355.
  • 19) Hayes, J. F., Stranaghan, B., and Dunkerley, J. A., The emulsifying properties of whey protein concentrates in a model system. New Zealand J. Dairy Sci. Technol., 14, 259-264 (1979).
  • 20) Shimizu, M., Kamiya, T., and Yamauchi, K., The adsorption of whey proteins on the surface of emulsified fat. Agric. Biol. Chem., 45, 2491-2496 (1981).
  • 21) Peltonen-Shalaby, R., and Mangino, M. E., Factors that affect the emulsifying and foaming properties of whey protein concentrates. J. Food Sci., 51, 103-105 (1986).
  • 22) Fligner, K. L., Fligner, M. A., and Mangino, M. E., The effects of compositional factors on the short-term physical stability of a concentrated infant formula. Food Hydrocolloids, 4, 95-104 (1990).
  • 23) Fligner, K. L., Fligner, M. A., and Mangino, M. E., Accelerated tests for predicting long-term creaming stability of infant formula emulsion systems. Food Hydrocolloids, 5, 269-280 (1991).
  • 24) Hunt, J. A. and Dalgleish, D. G., The effect of pH on the stability and surface composition of emulsions made with whey protein isolate. J. Agric. Food Chem., 42, 2131-2135 (1994).
  • 25) Hunt, J. A. and Dalgleish, D. G., Adsorption behaviour of whey protein isolate and caseinate in soya oil-in-water emulsions. Food Hydrocolloids, 8, 175-187 (1994).
  • 26) Karleskind, D., Laye, I., Morr, C.V., and Schenz, T. W., Emulsifying properties of lipid-reduced, and calcium-reduced whey protein concentrates. J. Food Sci., 61, 54-58 (1996).
  • 27) Pryor, W. A., Strickland, T., and Church, D. F., Comparison of the efficiencies of several natural and synthetic antioxidants in aqueous sodium dodecyl sulfate micelle solutions. J. Am. Chem. Soc., 110, 2224-2229 (1988).
  • 28) Castle, L. and Perkins, M. J., Inhibition kinetics of chain-breaking phenolic antioxidants in SDS micelles. Evidence that intermicellar diffusion rates may be rate-limiting for hydrophobic inhibitors such as α-tocopherol. J. Am. Chem. Soc., 108, 6381-6382 (1986).
  • 29) Pryor, W. A., Cornicelli, J.A., Devall, L. J., Tait, B., Trivedi, B. K., Witiak, D. T., and Wu, M., A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants. J. Org. Chem., 58, 3521-3532 (1993).
  • 30) Frankel, E. N., Huang, S.-W., Kanner, J., and German, J. B., Interfacial phenomena in the evaluation of antioxidants: Bulk oils vs. emulsions. J. Agric. Food Chem., 42, 1054-1059 (1994).
  • 31) Huang, S.-W., Frankel, E. N., and German, J. B., Antioxidant activity of α- and γ-tocopherols in bulk oils and in oil-in-water emulsions. J. Agric. Food Chem., 42, 2108-2114 (1994).
  • 32) Huang, S.-W., Hopia, A., Schwarz, K., Frankel, E. N., and German, J. B., Antioxidant activity of α-tocopherol and Trolox in different lipid substrates: Bulk oils vs. oil-in-water emulsions. J. Agric. Food Chem., 44, 444-452 (1996).
  • 33) Yamauchi, R., Matsui, T., Kato, K., and Ueno, Y., Reaction products of α-tocopherol with methyl linoleate-peroxyl radicals. Lipids, 25, 152-158 (1990).
  • 34) Hopia, A., Huang, S.-W., and Frankel, E. N., Effect of α-tocopherol and Trolox on the decomposition of methyl linoleate hydroperoxides. Lipids, 31, 357-365 (1996).
  • 35) Kamal-Eldin, A. and Appelqvist, L.-A., The chemistry and antioxidant properties of tocopherols and tocotrierols. Lipids, 31, 671-701 (1996).
  • 36) Kato, A. and Nakai, S., Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim. Biophys. Acta, 624, 13-20 (1980).
  • 37) Mitsuda, H., Yasumoto, K., and Iwami, K., Antioxidative action of indole compounds during the autoxidation of linoleic acid. J. Jpn. Soc. Nutr. Food Sci., 19, 210-214 (1966).
  • 38) Sinnhuber, R. O. and Yu, T. C., The 2-thiobarbituric acid reaction, an objective measure of the oxidative deterioration occuring in fats and oils. Yukagaku, 26, 259-267 (1977).
  • 39) Jones, M. N. and Wilkinson, A., The interaction between β-lactoglobulin and sodium n-dodecyl sulphate. Biochem. J., 153, 713-718 (1976).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.