495
Views
81
CrossRef citations to date
0
Altmetric
Original Articles

Oxidation of Trichloroethylene and Dimethyl Sulfide by a Marine Methylomicrobium Strain Containing Soluble Methane Monooxygenase

, , , , , , & show all
Pages 1925-1931 | Received 20 Apr 1998, Published online: 22 May 2014

  • . 1997. p. 597- 604.
  • . 1991. p. 71- 90.
  • 3) Brusseau, G. A., Tsien, H., Hanson, R. S., and Wackett, L. P., Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation, 1, 19-29 (1990).
  • 4) Stainthorpe, A. C., Salmond, G. P. C., Dalton, H., and Murrell, J. C., Screening of obligate methanotrophs for soluble methane monooxygenase genes. FEMS Microbiol. Lett., 70, 211-216 (1990).
  • 5) Tsien, H.-C. and Hanson, R. S., Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene. Appl. Environ. Microbiol., 58, 953-960 (1992).
  • 6) Koh, S.-C., Bowman, J. P., and Sayler, G. S., Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl. Environ. Microbiol., 29, 960-967 (1993).
  • 7) McDonald, I. R., Uchiyama, H., Kambe, S., Yagi, O., and Murrell, J. C., The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. Strain M. Appl. Environ. Microbiol., 63, 1898-1904 (1997).
  • 8) Stainthorpe, A. C., Murrell, J. C., Salmond, G. P. C., Dalton, H., and Lees, V., Molecular analysys of methane monooxygenase from Methylococcus capsulatus (Bath). Arch. Microbiol., 152, 154-159 (1989).
  • 9) Stainthorpe, A. C., Lees, V., Salmond, G. P. C., Dalton, H., and Murrell, J. C., The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene, 91, 27-34 (1990).
  • 10) Cardy, D. L. N., Laidler, V., Salmond, G. P. C., and Murrell, J. C., Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Mol. Microbiol., 5, 335-342 (1991).
  • 11) Cardy, D. L. N., Laidler, V., Salmond, G. P. C., and Murrell, J. C., The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of mmoC gene. Arch. Microbiol., 156, 477-483 (1991).
  • 12) Anthony, C., Bacterial oxidation of methane and methanol. Adv. Microbiol. Physiol., 27, 113-209 (1986).
  • 13) DiSpirito, A. A., Gulledge, J., Shiemke, A. K., Murrell, J. C., Lidstrom, M. E., and Krema, C. L., Trichloroehylene oxidation by the membrane-associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation, 2, 151-164 (1992).
  • 14) Uchiyama, H., Nakajima, T., Yagi, O., and Tabuchi, T., Aerobic degradation of trichloroethylene by a new type II methane-utilizing bacterium, strain M. Agric. Biol. Chem., 53, 2903-2907 (1989).
  • 15) Bouwer, E. J. and Zehnder, A. J. B., Bioremediation of organic compounds-putting microbial metabolism to work. Trends Biotechnol., 11, 360-367 (1993).
  • 16) Abrahamsson, K. and Klick, S., Distribution and fate of halogenated organic substances in an anoxic marine environment. Chemosphere, 18, 2247-2256 (1989).
  • 17) Tanabe S., Distribution, behavior and fate of PCBs in the marine environment. J. Oceanogr. Soc. Japan, 41, 358-370 (1985).
  • 18) Lees, V., Owens, N. J. P., and Murrell, J. C., Nitrogen metabolism in marine methanotrophs. Arch. Microbiol., 157, 60-65 (1991).
  • 19) Lidstorm, M. E., Isolation and characterization of marine methanotrophs. Antoniue van Leeuwenhoek, 54, 189-199 (1988).
  • 20) Sieburth, J. M., Johnson, P. W., Eberhardt, M. A., Sieracki, M. E., Lidstrom, M., and Laux, D., The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov. Curr. Microbiol., 14, 285-293 (1987).
  • 21) Bowman, J. P., Sly, L. I., and Stackebrandt, E., The phylogenetic position of the family Methylococcaceae. Int. J. Syst. Bacteriol., 45, 182-185 (1995).
  • 22) Bowman, J. P., Sly, L. I., Nichols, P. D., and Hayward, A. C., Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Bacteriol., 43, 735-753 (1993).
  • 23) McDonald, I. R., Kenna, E. M., and Murrell, J. C., Detection of methanotrophic bacteria in environmental samples with the PCR. Appl. Environ. Microbiol., 61, 116-121 (1995).
  • . 1993. p. 691- 703.
  • 25) Lovelock, J. E., and Maggs, R. J., and Rasmussen, R. A., Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature, 237, 452 (1972).
  • . 1991. p. 277- 285.
  • 27) Stirling, D. I., Colby, J., and Dalton, H., A comparison of substrate and electron-donor specificities of the methane mono-oxygenases from three strains of methane-oxidizing bacteria. Biochem. J., 177, 361-364 (1979).
  • 28) Colby, J., Dalton, H., and Whittenbury, R., An improved assay for bacterial methane mono-oxygenase: some properties of the enzyme from Methylomonas methanica. Biochem. J., 151, 459-462 (1975).
  • 29) Wolf, G. V. and Kiene, R. P., Effects of methylated, organic, and inorganic substrates on microbial consumption of dimethyl sulfide in estuarine waters. Appl. Environ. Microbiol., 59, 2723-2726 (1993).
  • 30) Morel, F. M. M., Rueter, J. G., Anderson, D. M., and Guilard, R. R. L., Aquil: A chemically defined phytoplankton culture medium for trace metal studies. J. Phycol, 15, 135-141 (1979).
  • 31) Gossett, J. M., Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environ. Sci. Technol., 21, 202-208 (1987).
  • 32) Dacey, J. W. H., Wakeham, S. G., and Howes, B. L., Henry’s law constants for dimethylsulfide in freshwater and seawater. Geophys. Res. Lett., 11, 991-994 (1984).
  • 33) Fuse, H., Takimura, O., Kamimura, K., Murakami, K., Yamaoka, Y., and Murooka, Y., Transformation of dimethyl sulfide and related compounds by cultures and cell extracts of marine phytoplankton. Biosci. Biotech. Biochem., 59, 1773-1775 (1995).
  • 34) Murakami, K., Fuse, H., Takimura, O., Kamimura, K., and Yamaoka, Y., Phylogenetic analysis of marine environmental strains of Vibrio that produce aerobactin. J. Mar. Biotechnol., 6, 76-79 (1998).
  • 35) Felsenstein, J., PHYLIP (Phylogeny Inference Package) vesion 3.57c. Distributed by the author. Department of Genetics, University of Washington, Seattle. (1995).
  • 36) Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J., and Woese, C. R., The ribosomal database project (RDP). Nucleic Acids Res., 24, 82-85 (1996).
  • 37) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951).
  • 38) Bensadoun, A. and Weinstein, D., Assay of proteins in the presence of interfering materials. Anal. Biochem., 70, 241-250 (1976).
  • 39) Yamaoka, Y., Takimura, O., Fuse, H., and Kamimura, K., Effects of culture conditions on fatty acid composition on Chattonella antiqua. Reports of the government industrial research institute, Chugoku (in Japanese), 39, 37-44 (1992).
  • 40) Holmes, A. J., Owens, N. J. P., and Murrell, J. C., Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology, 141, 1947-1955 (1995).
  • 41) Oppenheimer, C. H. and ZoBell, C. Z., The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J. Mar. Res., 11, 10-18 (1952).
  • 42) Alvarez-Cohen, L. and McCarty, P. L., Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl. Environ. Microbiol., 57, 1031-1037 (1991).
  • 43) Nakamura Y., Chemical environment for red tides due to Chattonella antiqua. Part 3. roles of iron and copper. J. Oceanogr. Soc. Japan, 46, 84-95 (1990).
  • 44) Juliette, L. Y., Hyman, M. R., and Arp, D. J., Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl. Environ. Microbiol., 59, 3718-3727 (1993).
  • 45) Bedard, C. and Knowles, R., Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev., 53, 68-84 (1989).
  • 46) Holmes, A.J., Castello, A., Lidstrom, M. E., and Murrell, J. C., Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett., 132, 203-208 (1995).
  • 47) Burrows, K. J., Cornish, A., Scott, D., and Higgins, I. J., Substrate specificities of the soluble and particulate methane mono-oxygenase of Methylosinus trichosporium OB3b. J. Gen. Microbiol., 130, 3327-3333 (1984).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.