171
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

The Role of the nirQOP Genes in Energy Conservation during Anaerobic Growth of Pseudomonas aeruginosa

, &
Pages 1995-1999 | Received 18 May 1998, Published online: 22 May 2014

  • 1) Saraste, M. and Castresana, J., Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett., 341, 1-4 (1994).
  • 2) Yamanaka, T., Identity of Pseudomonas cytochrome oxidase with Pseudomonas nitrite reductase. Nature, 204, 253-255 (1964).
  • 3) Silvestlini, M. C., Falcinelli, S., Ciabatti, I., Cutruzzolà, F., and Brunori, M., Pseudomonas aeruginosa nitrite reductase (or cytochrome oxidase): an overview. Biochimie, 76, 641-654 (1994).
  • 4) Fülöp, V., Moir, J. W. B., Ferguson, S. J., and Hajdu, J., The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd 1. Cell, 81, 369-377 (1995).
  • 5) Fujikawa, T. and Fukumori, Y., Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. J. Bacteriol., 178, 1866-1871 (1996).
  • 6) Zhao, X. J., Sampath, V., and Caughey, W. S., Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide. Biochem. Biophys. Res. Commun., 212, 1054-1060 (1995).
  • 7) van der Oost, J., de Boer, A. P. N., de Gier, J.-W. L., Zumft, W. G., Stouthamer, A. H., and van Spanning, R. J. M., The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol. Lett., 121, 1-10 (1994).
  • 8) Lappalainen, P. and Saraste, M., The binuclear CuA centre of cytochrome oxidase. Biochim. Biophys. Acta, 1187, 222-225 (1994).
  • 9) Zumft, W. G., Dreusch, A., Löchelt, S., Cuypers, H., Friedrich, B., and Schneider, B., Derived amino acid sequence of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur. J. Biochem., 208, 31-40 (1992).
  • 10) Arai, H., Igarashi, Y., and Kodama, T., Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa. Biosci. Biotech. Biochem., 58, 1286-1291 (1994).
  • 11) Jüngst, A. and Zumft, W. G., Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ, a novel gene in the denitrification gene cluster of Pseudomonas stutzeri. FEBS Lett., 314, 308-314 (1992).
  • . 1996. p. 298- 308.
  • 13) Wu, S., Moreno-Sanchez, R., and Rottenberg, H., Involvement of cytochrome c oxidase subunit III in energy coupling. Biochemistry, 34, 16298-16305 (1995).
  • 14) Haltia, T., Finel, M., Harms, N., Nakai, T., Raitio, M., Wirkström, M., and Saraste, M., Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J., 8, 3571-3579 (1989).
  • 15) Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H., Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature, 376, 660-669 (1995).
  • 16) Dunn, N. W. and Holloway, B. W., Pleiotropy of p-fluorophenylalanine-resistant and antibiotic hypersensitive mutants of Pseudomonas aeruginosa. Genet. Res., 18, 185-197 (1971).
  • . 1989.
  • 18) Fürste, J. P., Pansegrau, W., Frank, R., Blöcker, H., Scholz, P., Bagdasarian, M., and Lanka, E., Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene, 48, 119-131 (1986).
  • 19) Arai, H., Igarashi, Y., and Kodama, T., Cloning and sequencing of the gene encoding cytochrome c-551 from Pseudomonas aeruginosa. FEBS Lett., 261, 196-198 (1990).
  • 20) Arai, H., Igarashi, Y., and Kodama, T., The structural genes for nitric oxide reductase from Pseudomonas aeruginosa. Biochim. Biophys. Acta, 1261, 279-284 (1995).
  • 21) Arai, H., Zhang, Y., Sambongi, Y., Igarashi, Y., and Kodama, T., Production of recombinant cytochrome c-551 in a Pseudomonas aeruginosa mutant strain. J. Ferment. Bioeng., 79, 489-492 (1995).
  • 22) Arai, H., Igarashi, Y., and Kodama, T., Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett., 371, 73-76 (1995).
  • 23) Arai, H., Kodama, T., and Igarashi, Y., Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol. Microbiol., 25, 1141-1148 (1997).
  • 24) Glockner, A. B. and Zumft, W. G., Sequence analysis of an internal 9.72-kb segment from the 30-kb denitrification gene cluster of Pseudomonas stutzeri. Biochim. Biophys. Acta, 1277, 6-12 (1996).
  • 25) Zumft, W. G. and Körner, H., Enzyme diversity and mosaic gene organization in denitrification. Antonie van Leeuwenhoek, 71, 43-58 (1997).
  • 26) de Boer, A. P. N., van der Oost, J., Reijnders, W. N. M., Westerhoff, H. V., Stouthamer, A. H., and van Spanning, J. M., Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur. J. Biochem., 242, 592-600 (1996).
  • 27) John, P. and Whatley, F. R., Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature, 254, 495-498 (1975).
  • 28) Lang, B. F., Burger, G., O’kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., and Gray, M. W., An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature, 387, 498-497 (1997).
  • 29) de la Cruz, V. F., Neckelmann, N., and Simpson, L., Sequences of six genes and several open reading frames in the Kinetoplast maxicircle DNA of Leishmania tarentolae. J. Biol. Chem., 259, 15136-15147 (1984).
  • 30) Haltia, T., Saraste, M., and Wirkström, M., Subunit III of cytochrome c oxidase is not involved in proton translocation: a site-directed mutagenesis study. EMBO J., 8, 2015-2021 (1991).
  • 31) Egami, F., A comment to the concept on the role of nitrate fermentation and nitrate respiration in an evolutionary pathway of energy metabolism. Z. Allg. Mikrobiol., 13, 177-181 (1973).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.