85
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Rat Fetuin on Stimulation of Bone Resorption in the Presence of Parathyroid Hormone

, , , , , & show all
Pages 1383-1391 | Received 22 Feb 1999, Accepted 13 Apr 1999, Published online: 22 May 2014

  • 1) Heinegård, D., Hultenby, K., Oldberg, Å., Reinholt, F., and Wendel, M., Macromolecules in bone matrix. Connect. Tissue Res., 21, 3-14 (1989).
  • 2) Ohnishi, T., Arakaki, N., Nakamura, O., Hirono, S., and Daikuhara, Y., Purification, characterization, and studies on biosynthesis of a 59-kDa bone sialic acid-containing protein (BSP) from rat mandible using a monoclonal antibody. Evidence that 59-kDa BSP may be the rat counterpart of human α2-HS glycoprotein and is synthesized by both hepatocyte and osteoblasts. J. Biol. Chem., 266, 14636-1464 (1991).
  • 3) Ohnishi, T., Nakamura, O., Ozawa, M., Arakaki, N., Muramatsu, T., and Daikuhara, Y., Molecular cloning and sequence analysis of cDNA for a 59-kD bone sialoprotein of the rat: Demonstration that it is a counterpart of human α2-HS glycoprotein and bovine fetuin. J. Bone Miner. Res., 8, 367-377 (1993).
  • 4) Arnaud, P., Miribel, L., and Emerson, D. L., α2-HS glycoprotein. Method. Enzymol., 163, 431-444 (1988).
  • 5) Kellerman, J., Haupt, H., Auerswald, E.-A., and Müller-Esterl, W., The arrangement of disulfide loops in human α2-HS glycoprotein. Similarity to the disulfide bridge structures of cystatins and kininogens. J. Biol. Chem., 264, 14121-14128 (1989).
  • 6) Hu, B., Coulson, L., Moyer, B., and Price, P. A., Isolation and molecular cloning of a novel bone phosphoprotein related in sequence to the cystatin family of thiol protease inhibitors. J. Biol. Chem., 270, 431-436 (1995).
  • 7) Haaseman, M., Nawratil, P., and Müller-Esterl, W., Rat tyrosine kinase inhibitor shows sequence similarity to human α2-HS glycoprotein and bovine fetuin. Biochem. J., 274, 899-902 (1991).
  • 8) Rauth, G., Pöchke, O., Fink, E., Eulitz, M., Tippmer, S., Kellerer, M., Häring, H.-U., Nawratil, P., Hassemann, M., Jahnen-Dechent, W., and Müller-Esterl, W., The nucleotide and partial amino acid sequences of the rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor. Eur. J. Biochem., 204, 523-529 (1992).
  • 9) Auberger, P., Falquerho, L., Contreres, J. O., Pages, G., Le Cam, G., Rossi, B., and Le Cam, A., Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and antimitogenic activity. Cell, 58, 631-640 (1989).
  • . 1993. p. 251- 274.
  • 11) Ohnishi, T., Nakamura, O., Arakaki, N., and Daikuhara, Y., Effect of phosphorylated rat fetuin on the growth of hepatocyte in primary culture in the presence of hepatocyte growth factor-scatter factor (HGF/SF). Evidence that phosphorylated rat fetuin is a natural modulator of HGF/SF. Eur. J. Biochem., 243, 753-761 (1997).
  • 12) Rohrlich, S. T. and Rifkin, D. B., Isolation of the major serine protease inhibitor from the 5-day serum-free conditioned medium of human embryonic lung cells and demonstration that it is fetuin. J. Cell Physil., 109, 1-15 (1981).
  • 13) Hsu, C. C. S. and Floyd, M., Lymphocyte stimulating and immunochemical properties of fetuin preparations. Protides Biol. Fluids Proc. Colloq., 24, 295-302 (1976).
  • 14) Cayatte, A. J., Kumbla, L., and Subbiah, M. T. R., Marked acceleration of exogenous fatty acid incorporation into cellular triglyceride by fetuin. J. Biol. Chem., 265, 5883-5888 (1990).
  • 15) Kumbla, L., Cayatte, A. J., and Subbiah, M. T. R., Association of a lipoprotein-like particle with bovine fetuin. FASEB J., 3, 2075-2080 (1989).
  • 16) Fisher, D. A. and Lam, R. W., Thyroid hormone binding by bovine and ovine fetuin. Endocrinology, 94, 49-54 (1974).
  • 17) Abdullah, M., Crowell, J. A., Tres, L. L., and Kierszenbaum, A. L., Fetuin: A serum component associated with rat Sertoli and spermatogenic cells in coculture. J. Cell Physiol., 127, 463-472 (1986).
  • 18) Triffitt, J. T., Gebauer, U., Ashton, B. A., Owen, M. E., and Reynolds J. J., Origin of plasma α2-HS glycoprotein and its accumulation in bone. Nature, 262, 226-227 (1976).
  • 19) Schinke, T., Amendt, C., Trindl, A., Pöschke, O., Müller-Esterl, W., and Jahnen-Dechent, W., The serum protein α2-HS Glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. J. Biol. Chem., 271, 20789-20796 (1996).
  • 20) Wilson, J. M., Ashton, B. A., and Triffitt, J. T., The interaction of a component of bone organic matrix with the mineral phase. Calcif. Tissue Int., 22, 458-460 (1977).
  • 21) Demetriou, M., Binkert, C., Sukhu, B., Tenenbaum, H. C., and Dennis, J. W., Fetuin/α2-HS glycoprotein is a transforming growth factor-β type II receptor mimic and cytokine antagonist. J. Biol. Chem., 271, 12755-12761 (1996).
  • 22) Yang, F., Schwartz, Z., Swain, L. D., Lee, C.-C., Bowman, B. H., and Boyan B. D., α2-HS glycoprotein: Expression in chondrocytes and augmentation of alkaline phosphatase and phospholipase A2 activity. Bone, 12, 7-15 (1991).
  • 23) Malone, J. D., Teitelbaum, S. L., Griffin, G. L., Senior, R. M., and Kahn, A. J. Recruitment of osteoclast precursors by purified bone matrix constituents. J. Cell Biol., 92, 227-230 (1982).
  • 24) Colclasure , G. C., Lloyd, W. S., Lamkin, M., Gonnerman, W., Troxler, R. F., Offner, G. D., Bürgi, W., Schmid, K., and Nimberg, R. B., Human serum α2-HS glycoprotein modulates in vitro bone resorption. J. Clin. Endocrin. Metabol., 66, 187-192 (1987).
  • 25) Nakamura, O., Gohda, E., Ozawa., M, Senba, I., Miyazaki, H., Murakami, T., and Daikuhara, Y., Immunohistochemical studies with a monoclonal antibody on the distribution of phosphophoryn in predentin and dentin. Calcif. Tissue Int., 37, 491-500 (1985).
  • 26) Nakama, T., Nakamura, O., Daikuhara, Y., and Semba, T., A monoclonal antibody against dentin phosphophoryn recognizes a bone protein(s) appearing at the beginning of ossification. Calcif. Tissue Int., 43, 263-267 (1988).
  • 27) Shiina, Y., Yamaguchi, A., Yamana, H., Abe, E., Yoshiki, S., Suda, T., Comparison of the mechanism of bone resorption induced by 1α, 25-dihydroxyvitamin D3 and lipopolysaccharides. Calcif. Tissue Int., 39, 28-34 (1986).
  • 28) Kakegawa, H., Nikawa, T., Tagami, K., Kamioka, H., Sumitani, K., Kawata, T., Drobnic-Kosorok, M., Lenarcic, B., Turk, V., and Katunuma, N., Participation of cathepsin L on bone resorption. FEBS Lett., 321, 247-250 (1993).
  • 29) Barrett, A. J. and Kirschke, H., Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol., 80, 535-561 (1981).
  • . 1967. p. 1- 593.
  • 31) Vaes, G., A review of recent developments on the formation, activation, and mode of action of osteoclasts. Clin. Orthop. Related Res., 231, 239-271 (1988).
  • 32) Roodman, G. D., Interleukin-6: An osteotropic factor? J. Bone Miner. Res., 7, 475-478 (1992).
  • 33) Barton, B. E. and Mayer, R., IL 3 and IL 6 do not induce bone resorption in vitro. Cytokine, 2, 217-220 (1990).
  • 34) Al-Humidan, A., Ralston, S. H., Hughes, D. E., Chapman, K., Aarden, L., Russell, R. G. G., and Gowen, M., Interleukin-6 does not stimulate bone resorption in neonatal mouse calvariae. J. Bone Miner. Res., 6, 3-8 (1991).
  • 35) Delaisse, J. M., Ledent, P., and Vaes, G., Collagenolytic cysteine proteinases of bone tissue. Cathepsin B, (pro)cathepsin L and a cathepsin L-like 70 kDa proteinase. Biochem. J., 279, 167-174 (1991).
  • 36) Goto, T., Kiyoshima, T., Moroi, R., Tsukuba T., Nishimura, Y., Himeno, M., Yamamoto, K., and Tanaka, T., Localization of cathepsins B, D, and L in the rat osteoclast by immune-light and -electron microscopy. Histochemistry, 101, 33-40 (1994).
  • 37) Goto, T., Tsukuba, T., Kiyoshima, T., Nishimura, Y., Kato, K., Yamamoto, K., and Tanaka, T., Immunohistochemical localization of cathepsins B, D, L in the rat osteoclasts. Histochemistry, 99, 411-414 (1993).
  • 38) Hill, P. A., Buttle, D. J., Jones, S. J., Boyde, A., Murata, M., Reynold, J. J., and Meikle, M. C., Inhibition of bone resorption by selective inactivators of cysteine proteinases. J. Cell Biochem., 56, 118-130 (1994).
  • . 1994. p. 3- 21.
  • . 1977. p. 249- 283.
  • . 1980.
  • 42) Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z., The collagen substrate specificity of human skin fibroblast collagenase. J. Biol. Chem., 256, 9511-9515 (1981).
  • 43) Lamkin, M. S., Colclasure, C., Lloyd, J. M., Gonerman, W., Schmid, K., and Nimberg, R. B., Purification and partial characterization of a 52,000 dalton glycoprotein from human cancer ascites fluid which stimulates bone resorption in vitro. Cancer Res., 46, 4650-4655 (1986).
  • 44) Lamkin, M., Colclasure, C., Rodrick, M., Troxler, R. M., Offner, G. D., Lloyd, W. S., Schmid, K., and Nimberg, R. B., Three forms of BRF-2 (Bone Resorptive Proteins) from human cancer asites fluid and their relationship to human serum alpha-2 HS-glycoprotein. Calcif. Tissue Int., 41, 171-175 (1987).
  • 45) Christie, D. L., Dziegielewska, K. M., Hill, R. M., and Saunders, N. R., Fetuin: the bovine homologue of human α2-HS glycoprotein. FEBS Lett., 214, 45-49 (1987).
  • 46) Dziegielewska, K. M., Brown, W. M., Casey, S. J., Christie, D. L., Foreman, R. C., Hill, R. M., and Saunders, N. R., The complete cDNA and amino acid sequence of bovine fetuin. Its homology with α2-HS glycoprotein and relation to other members of the cystatin superfamily. J. Biol. Chem., 265, 4354-4357 (1990).
  • . 1995. p. 103- 121.
  • 48) Dickson, I. R., Poole, A. R., and Veis, A., Localization of plasma α2-HS glycoprotein in mineralizing human bone. Nature, 256, 430-432 (1975).
  • 49) Ashton, B. A., Höling, H.-J., and Triffitt, J. T., Plasma proteins present in human cortical bone: Enrichment of the α2-HS glycoprotein. Calcif. Tissue Res., 22, 27-33 (1976).
  • 50) Mbuyi, J.-M., Dequeker, J., Bloemmen, F., and Stevens, E., Plasma proteins in human cortical bone: Enrichment of α2-HS glycoprotein, α1 acid-glycoprotein, and IgE. Calcif. Tissue Int., 34, 229-231 (1982).
  • 51) Pietschmann, P., Farsoudi, K. H., Hoffmann, O., Klaushofer, K., Hörandner, H., and Peterlik, M., Inhibitory effect of amylin on basal and parathyroid hormone-stimulated bone resorption in cultured neonatal mouse calvaria. Bone, 14, 167-172 (1993).
  • 52) Perry, H. M., III and Gurbani, S., Development of monoclonal antibodies to parathyroid hormone induced resorptive factors from osteoblast-like cells. Calcif. Tissue Int., 50, 237-244 (1992).
  • 53) Greenfield, E. M., Gornik, S. A., Horowitz, M. C., Donahue, H. J., and Shaw, S. M., Regulation of cytokine expression in osteoblasts by parathyroid hormone: rapid stimulation of interleukin-6 and leukemia inhibitory factor mRNA. J. Bone Miner. Res., 8, 1163-1171 (1993).
  • 54) Nussbaum, S. R., Zahradnik, R. J., Lavigne, J. R., Brennam, G. L., Nozawa-Ung, K., Kim, L. Y., Keutmann, H. T., Wang, C. A., Potts, J. T., Jr, and Segre, G. V., Highly sensitive two-site immunoradiometric assay of parathyrin, and its clinical utility in evaluating patients with hypercalcemia. Clin. Chem., 33, 1364-1367 (1987).
  • . 1995. p. 11- 42.
  • 56) Kessler, E. and Adar, R., Type I procollagen C-proteinase from mouse fibroblasts: purification and demonstration of a 55-kDa enhancer glycoprotein. Eur. J. Biochem., 186, 115-121 (1989).
  • 57) Katunuma, N., Molecular mechanisms of bone collagen degradation in bone resorption. J. Bone Miner. Metab., 15, 1-8 (1997).
  • 58) Tezuka, K., Tezuka, Y., Maejima, A., Sato, T., Nemoto, K., Kamioka, H., Hakeda, Y., and Kumegawa, M. Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J. Biol. Chem., 269, 1106-1109 (1994).
  • 59) Drake, F. H., Dodds, R. A., James, I. E., Connor, J. R., Debouck, C., Richrdson, S., Lee-Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., Hastings, G., and Gowen, M., Cathepsin K, but not cathepsins B, L, or S, is abundently expressed in human osteoclasts. J. Biol. Chem., 271, 12511-12516 (1996).
  • 60) Bossard, M. J., Tomaszek, T. A., Thompson, S. K., Amegadrizie, B. Y., Hanninng, C. R., Jones, C, Kurdyla, J. T., McMulty, D. E., Drake, F. H., Gowen, M., and Levy, M. A., Proteolytic activity of human osteoclast cathepsin K: expression, purification, activation, and substrate identification. J. Biol. Chem., 271, 12517-12524 (1996).
  • 61) Saftig, P., Hunziker, E., Wehmeyer, O., Jones, S., Boyde, A., Rommerskirch, W., Moritz, J. D., Schu, P., and von Figura, K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. U.S.A., 95, 13453-13458 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.