90
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Existence of Two Kinds of Sulfur-reducing Systems in Iron-oxidizing Bacterium Thiobacillus ferrooxidans

, , , &
Pages 813-819 | Received 28 Sep 1998, Accepted 25 Jan 1999, Published online: 22 May 2014

  • 1) Torma, A. E., The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv. Biochem. Eng., 6, 1-38 (1977).
  • 2) Lundgren, D. G. and Silver, M., Ore leaching by bacteria. Ann. Rev. Microbiol., 34, 263-283 (1980).
  • 3) Hutchins, S. R., Davidson, M. S., Brierley, J. A., and Brierley, C. L., Microorganisms in reclamation of metals. Ann. Rev. Microbiol., 40, 311-336 (1986).
  • 4) Brierley, C. L., Microbiological mining. Sci. Am., 247, 42-49 (1982).
  • 5) Nicolaidis, A. A., Microbial mineral processing: the opportunities for genetic manipulation. J. Chem. Tech. Biotechnol., 38, 167-185 (1987).
  • . 1997. p. 229- 245.
  • . 1988. p. 65- 98.
  • 8) Hooper, A. and DiSpirito, A. A., In bacteria which grow on simple reductants, generation of a proton gradient involves extracytoplasmic oxidation of substrate. Microbiol. Rev., 49, 140-157 (1985).
  • 9) Yamanaka, T. and Fukumori, Y., Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol. Rev., 17, 401-413 (1995).
  • 10) Ingledew, W. J., Thiobacillus ferrooxidans—The bioenergetics of an acidophilic chemolithotroph. Biochim. Biophys. Acta, 683, 89-117 (1982).
  • 11) Blake, R. C. II and Shute, E. A., Respiration enzymes of Thiobacillus ferrooxidans. A kinetic study of electron transfer between iron and rusticyanin in sulfate media. J. Biol. Chem., 262, 14983-14989 (1987).
  • 12) Sugio, T., Mizunashi, W., Inagaki, K., and Tano, T., Purification and some properties of sulfur: ferric ion oxidoreductase from Thiobacillus ferrooxidans. J. Bacteriol., 169, 4916-4922 (1987).
  • 13) Ronk, M., Shively, J. E., Shute, E. A., and Blake, R. C., Amino acid sequence of the blue copper protein rusticyanin from Thiobacillus ferrooxidans. Biochemistry, 30, 9435-9442 (1991).
  • 14) Sugio, T., Tsujita, Y., Katagiri, T., Inagaki, K., and Tano, T., Reduction of Mo6+ with elemental sulfur by Thiobacillus ferrooxidans. J. Bacteriol., 170, 5956-5959 (1988).
  • 15) Sugio, T., Tsujita, Y., Inagaki, K., and Tano, T., Reduction of cupric ions with elemental sulfur by Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 56, 693-696 (1990).
  • 16) Sugio, T., Suzuki, H., Tanaka, T., and Tano, T., NADH-dependent sulfite reductase activity in the periplasmic space of Thiobacillus ferrooxidans. Biosci. Biotechnol. Biochem., 47, 1357-1359 (1993).
  • . 1995. p. 109- 117.
  • 18) Bacon, M. and Ingledew, W. J., The reduction reactions of Thiobacillus ferrooxidans on sulphur and selenium. FEMS Microbiol. Lett., 58, 189-194 (1989).
  • . 1996. p. 578- 614.
  • 20) Sugio, T., Kishimoto, K., and Oda, K., Thiosulfate reductase from a moderately thermophilic iron-oxidizing bacterium, Strain TI-1-purification and characterization. Biosci. Biotechnol. Biochem., 61, 470-474 (1997).
  • 21) Sugio, T., Oda, K., Matsumoto, K., Takai, M., Wakasa, S., and Kamimura, K., Purification and characterization of sulfur reductase from a moderately thermophilic bacterial strain, TI-1, that oxidizes iron. Biosci. Biotechnol. Biochem., 62, 705-709 (1998).
  • 22) Sugio, T., Oda, K., and Kishimoto, K., The mechanism of Fe2+ production by a moderately thermophilic iron-oxidizing bactreium TI-1. Biosci. Biotechnol. Biochem., 60, 1356-1358 (1996).
  • 23) Oda, K., Matsumoto, K., Takai, M., Wakasa, S., Kamimura, K., and Sugio, T., Production of hydrogen sulfide by a moderately thermophilic iron-oxidizing bacterium strain TI-1. J. Ferment. Bioeng., 84, 372-374 (1997).
  • 24) Sugio, T., Kishimoto, K., Takai, M., Oda, K., and Tano, T., Growth of moderately thermophilic iron-oxidizing bacterium strain TI-1 in synthetic medium. J. Ferment. Bioeng., 79, 290-293 (1995).
  • 25) Sugio, T. and Akhter, F., Solubilization of Cu2+ from copper ore by iron-oxidizing bacteria isolated from the natural environment and identification of the enzyme that determines Cu2+ solubilization activity. J. Ferment. Bioeng., 82, 346-350 (1996).
  • 26) Sugio, T., Fujioka, A., Tsuchiya, M., Shibusawa, N., Iwahori, K., and Kamimura, K., Isolation and some properties of an iron-oxidizing bacterium Thiobacillus ferrooxidans resistant to 2,4-dinitrophenol. J. Ferment. Bioeng., 86, 134-137 (1998).
  • 27) Ng, K. Y., Oshima, M., Blake, II, R. C., and Sugio, T., Isolation and some properties of an iron-oxidizing bacterium resistant to molybdenum ion. Biosci. Biotechnol. Biochem., 61, 1523-1526 (1997).
  • 28) Sugio, T., Suzuki, H., Oto, A., Inagaki, K., Tanaka, H., and Tano, T., Purification and some properties of a hydrogen sulfide-binding protein that is involved in sulfur oxidation of Thiobacillus ferrooxidans. Agric. Biol. Chem., 55, 2091-2097 (1991).
  • 29) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurements with Folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951).
  • 30) Biebl, H. and Pfenning, N., Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol., 112, 115-117 (1977).
  • 31) Peck, H. D. Jr., Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol. Rev., 26, 67-94 (1962).
  • 32) Postgate, J. R., Recent advances in the study of the sulphate-reducing bacteria. Bacteriol. Rev., 29, 425-441 (1965).
  • 33) Postgate, J. R., Sulphate reduction by bacteria. Annu. Rev. Microbiol., 13, 505-520 (1959).
  • 34) Pfenning, N. and Biebl, H., Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur reducing, acetate-oxidizing bacterium. Arch. Microbiol., 110, 3-12 (1976).
  • 35) Ma, K. and Adams, M. W. W., Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J. Bacteriol., 176, 6509-6517 (1994).
  • 36) Laanbroek, H. J., Stal, L. J., and Veldkamp, H., Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch. Microbiol., 119, 99-102 (1978).
  • 37) Schroder, I., Kroger, A., and Macy, J. M., Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogens. Arch. Microbiol., 149, 572-579 (1988).
  • 38) Ma, K., Schicho, R. N., Kelly, R. M., and Adams, M. W. W., Hydrogenase of the thermophilic Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: Evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl. Acad. Sci. USA, 90, 5341-5344 (1993).
  • 39) Bryant, F. O. and Adams, M. W. W., Characterization of hydrogenase from hyperthermophilic archaebacterium, Pyrococcus furiosus. J. Biol. Chem., 264, 5070-5079 (1989).
  • 40) Drobner, E., Huber, H., and Stetter, K. O., Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microbiol., 56, 2922-2923 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.