121
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Application of a Metal Switch to Aqualysin I, a Subtilisin-type Bacterial Serine Protease, to the S3 Site Residues, Ser102 and Gly131

, , &
Pages 2008-2011 | Received 05 Apr 2000, Accepted 19 May 2000, Published online: 22 May 2014

  • 1) Kwon, S.-T., Matsuzawa, H., and Ohta, T., Determination of the positions of the disulfide bonds in aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1. J. Biochem., 104, 557-559 (1988).
  • 2) Matsuzawa, H., Hamaoki, M., and Ohta, T., Production of thermophilic extracellular proteases (aqualysin I and II) by T. aquaticus YT-1, an extreme thermophile. Agric. Biol. Chem., 47, 25-28 (1983).
  • 3) Matsuzawa, H., Tokunaga, K., Hamaoki, M., Mizoguchi, M., Taguchi, H., Terada, I., Kwon, S.-T., and Ohta, T., Purification and characterization of aqualysin I (a thermophilic alkaline serine protease) produced by Thermus aquaticus YT-1. Eur. J. Biochem., 171, 441-447 (1988).
  • 4) Kwon, S.-T., Terada, I., Matsuzawa, H., and Ohta, T., Nucleotide sequence of the gene for aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1 and characteritics of the deduced primary structure of the enzyme. Eur. J. Biochem., 173, 491-497 (1988).
  • 5) Terada, I., Kwon, S.-T., Miyata, Y., Matsuzawa, H., and Ohta, T., Unique precursor structure of an extracellular protease, aqualysin I, with NH2- and COOH-terminal pro-sequences and its processing in Escherichia coli. J. Biol. Chem., 265, 6576-6581 (1990).
  • 6) Lee, Y.-C., Miyata, Y., Terada, I., Ohta, T., and Matsuzawa, H., Involvement of NH2-terminal pro-sequence in the position of active aqualysin I (a thermophilic serine protease) in Escherichia coli. Agric. Biol. Chem., 55, 3027-3032 (1991).
  • 7) Lee, Y.-C., Ohta, T., and Matsuzawa, H., A non-covalent NH2-terminal pro-region aids the production of active aqualysin I (a thermophilic protease) without the COOH-terminal pro-sequence in Escherichia coli. FEMS Microbiol. Lett., 92, 73-78 (1992).
  • 8) Tanaka, T., Matsuzawa, H., and Ohta, T., Stability of thermostable enzyme, aqualysin I; a subtilisin-type serine protease from Thermus aquaticus YT-1. Biosci. Biotechnol. Biochem., 62, 1806-1808 (1998).
  • 9) Tanaka, T., Matsuzawa, H., Kojima, S.. Kumagai, S., Miura, K., and Ohta, T., P1-specificity of aqualysin I (a subtilisin-type serine protease) from Thermus aquaticus YT-1, using P1-substituted derivatives of Streptomyces subtilisin inhibitor. Biosci. Biotechnol. Biochem., 62, 2035-2038 (1998).
  • 10) Tanaka, T., Matsuzawa, H., and Ohta, T., Substrate specificity of aqualysin I, a bacterial thermophilic alkaline serine protease from Thermus aquaticus YT-1: comparison with proteinase K, subtilisin BPN′ and subtilisin Carlsberg. Biosci. Biotechnol. Biochem., 62, 2161-2165 (1998).
  • 11) Tanaka, T., Matsuzawa, H., and Ohta, T., Engineering of S2 site of aqualysin I; alteration of P2-specificity by excluding P2 side chain. Biochemistry, 37, 17402-17407 (1998).
  • 12) Tanaka, T., Matsuzawa, H., and Ohta, T., Substrate specificity of aqualysin I altered by an organic solvent, DMSO. Biosci. Biotechnol. Biochem., 63, 446-448 (1999).
  • 13) Tanaka, T., Matsuzawa, H., and Ohta, T., Identification and designing of S3 site of aqualysin I, a thermophilic subtilisin-related serine protease. J. Biochem., 125, 1016-1021 (1999).
  • 14) Siezen, R. J., Vos, W. M., Leunissen, J. A. M., and Dijkstra, B. W, Homology medelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng., 4, 719-731 (1991).
  • 15) Estell, D. A., Graycar, T. P., Miller, J. V., Powers, D. B., Burnier, J. P., Ng, P. G., and Wells, J. A, Probing steric and hydrophobic effects on enzyme-substrate interactions by protein engineering. Science, 233, 659-663 (1986).
  • 16) Wells, J. A., Powers, D. B., Bott, R. R., Graycar, T. P., and Estell, D. A., Designing substrate specificity by protein engineering of electrostatic interactions. Proc. Natl. Acad. Sci. USA, 84, 1219-1223 (1987).
  • 17) Carter, P. and Wells, J. A., Engineered enzyme specificity by “substrate-assisted catalysis”. Science, 237, 394-399 (1987).
  • 18) Russell, A. J. and Fersht, A. R., Rational modification of enzyme catalysis by engineering surface charge. Nature, 328, 496-500 (1987).
  • 19) Rheinnecker, M., Eder, J., Pandey, P. S., and Fersht, A. R., Variants of subtilisin BPN’ with altered specificity profiles. Biochemistry, 33, 221-225 (1994).
  • 20) Ballinger, M. D., Tom, J., and Wells, J. A., Furilisin: A variant of subtilisin BPN′ engineered for cleaving tribasic substrates. Biochemistry, 35, 13579-13585 (1996).
  • 21) Sørensen, S. B., Bech, L. M., Meldal, M., and Breddam, K., Mutational replacements of the amino acid residues forming the hydrophobic S4 binding pocket of subtilisin 309 from Bacillus lentus. Biochemistry, 32, 8994-8999 (1993).
  • 22) Bevan, A., Brenner, C., and Fuller, R.S., Quantative assessment of enzyme specificity in vivo: P2 recognition by Kex2 protease defined in a genetic system. Proc. Natl. Acad. Sci. USA, 95, 10384-10389 (1998).
  • 23) Betzel, C., Pal, G. P., and Saenger, W., Three-dimensional structure of proteinase K at 0.15-nm resolution. Eur. J. Biochem., 178, 155-171 (1988).
  • 24) Bode, W., Papamokos, E., and Musil, D., The high-resolution X-ray crystal structure of the complex fromed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Eur. J. Biochem., 166, 673-692 (1987).
  • 25) Heinz, D. W., Priestle, J. P., Rahuel, J., Wilson, K. S., and Grütter, M. G., Refined crystal structures of subtilisin Novo in complex with wild-type and two mutant eglins. J. Mol. Biol., 217, 353-371 (1991).
  • 26) Willett, W. S., Gillmore, S. A., Perona, J. J., Fletterick, R. J., and Craik, C. S., Engineered metal regulation of trypsin specificity. Biochemistry, 34, 2172-2180 (1995).
  • 27) Willett, W. S., Brinen, L. S., Fletterick, R. J., and Craik, C. S., Delocalizing trypsin specificity with metal activation. Biochemistry, 35, 5992-5998 (1996).
  • 28) Higaki, J. N., Haymore, B. L., Chen, S., Fletterick, R. J., and Craik, C. S., Ragulation of serine protease activity by an engineered metal switch. Biochemistry, 29, 8582-8586 (1990).
  • 29) Brinen, L. S., Willett, W. S., Craik, C. S., and Fletterick, R. J., X-ray structures of a designed binding site in trypsin show metal-dependent geometry. Biochemistry, 35, 5999-6009 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.