190
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Adenine-induced Renal Failure on Tryptophan-niacin Metabolism in Rats

, , , &
Pages 2154-2161 | Received 24 Jan 2001, Accepted 30 Mar 2001, Published online: 22 May 2014

  • 1) Shibata, K., Hayakawa, T., Taguchi, H., and Iwai, K., Regulation of pyridine nucleotide coenzyme metabolism. Adv. Exp. Med. Biol., 294, 207-218 (1991).
  • 2) Shibata, K., Blood pyridine nucleotide levels reflect niacin equivalent intake in humans. J. Clin. Biochem. Nutr., 3, 37-45 (1987).
  • 3) Shibata, K. and Matsuo, H., Effect of dietary tryptophan levels on the urinary excretion of nicotinamide and its metabolites in rats fed a niacin-free diet or a constant total protein level. J. Nutr., 120, 1191-1197 (1990).
  • 4) Okamoto, H., Okada, F., and Hayaishi, O., Kynurenine metabolism in hyperthyroidism. A biochemical basis for the low NAD(P) level in hyperthyroid rat liver. J. Biol. Chem., 246, 7759-7763 (1971).
  • 5) Sanada, H., Alteration of tryptophan-niacin metabolism by hormones and nutrients. Vitamins (Japan), 61, 549-562 (1987).
  • 6) Shibata, K., Effects of protein-amino acids, lipid, and carbohydrate on the conversion ratio of tryptophan to niacin. Vitamins (Japan), 70, 369-382 (1996).
  • 7) Shibata, K, and Toda, S., Effect of thyroxine on the conversion ratio of tryptophan to nicotinamide in rats. Biosci. Biotechnol. Biochem., 58, 1757-1762 (1994).
  • 8) Hayaishi, O., Studies on the biosynthesis of NAD from tryptophan. Vitamins (Japan), 31, 107-114 (1965).
  • 9) Ikeda, M., Tsuji, H., Nakamura, S., Ichiyama, A., Nishizuka, Y., and Hayaishi, O., Studies on the biosynthesis of nicotinamide adenine dinucleotide. II. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. J. Biol. Chem., 240, 1395-1401 (1965).
  • 10) Da Silva, A.C., Fried, R., and Angelis, R.C., The domestic cats as a laboratory animal for experimental nutrition studies. III. Niacin requirements and tryptophan metabolism. J. Nutr., 46, 399-409 (1952).
  • 11) Nishizuka, Y. and Hayaishi, O., Enzymic synthesis of niacin nucleotides from 3-hydroxyanthranilic acid in mammalian liver. J. Biol. Chem., 238, PC483-485 (1963).
  • 12) McDaniel, H.G., Reddy, W.J., and Boshell, J.M., The mechanism of inhibition of phosphoenolpyruvate carboxylase by quinolinic acid. Biochim. Biophys. Acta, 276, 543-550 (1972).
  • 13) Schwarcz, R., Whetsell, W.O., Jr., and Mangano, R.M., Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain, Science, 219, 316-318 (1983).
  • 14) Sanada, H., Miyazaki, M., and Takahashi, T., Regulation of tryptophan-niacin metabolism in diabetic rats. J. Nutr. Sci. Vitaminol., 26, 449-459 (1980).
  • 15) Saito, K., Fujigaki, S,. Heyes, M.P., Shibata, K., Takemura, M,. Fujii, H., Wada, H., Noma, A., and Seishima, M., Mechanism of increases in L-Kynurenine and quinolinic acid in renal insufficiency. Am. J. Physiol. Renal. Physiol., 279, F565-F572 (2000).
  • 16) Philips, F.S., Thiersch, J.B., and Birndorf, A., Adenine intoxication in relation to in vivo formation and deposition of 2,8-dioxyadenine in renal tubules. J. Pharmacol. Exp. Therap., 104, 20-30 (1952).
  • 17) Shields, C.E., Lopas, H., and Birndorf, N.I., Investigation of nephrotoxic effects of adenine and its metabolic product, 2,8-dioxyadenine, on primates (Macaca irus). J. Clin. Pharmacol., 10, 316-322 (1970).
  • 18) Pullman, M.P. and Colowick, S.P., Preparation of 2- and 6-pyridones of N1-methylnicotinamide. J. Biol. Chem., 206, 121-127 (1954).
  • 19) Shibata, K., Kawada, T., and Iwai, K., Simultaneous micro-determination of nicotinamide and its major metabolites, N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-3-carboxamide, by highperformance liquid chromatography. J. Chromatogr., 424, 23-28 (1988).
  • 20) Shibata, K. and Murata, K., Blood NAD as an index of niacin nutrition, Nutr. Int., 2, 177-181 (1986).
  • 21) Shibata, K. and Tanaka, K., Simple measurement of blood NADP and blood levels of NAD and NADP in humans. Agric. Biol. Chem., 50, 2941-2942 (1986).
  • 22) Shibata, K., Ultramicro-determination of N1-methylnicotinamide in urine by high-performance liquid chromatography. Vitamins (Japan), 61, 599-604 (1987).
  • 23) Shibata, K., Fluorimetric micro-determination of kynurenic acid, an endogenous blocker of neurotoxicity, by high-performance liquid chromatography. J. Chromatogr., 430, 376-380 (1988).
  • 24) Shibata, K. and Onodera, M., Simultaneous high-performance liquid chromatographic measurement of xanthurenic acid and 3-hydroxyanthranilic acid in urine. Biosci. Biotechnol. Biochem., 56, 974 (1992).
  • 25) Shibata, K. and Onodera, M., Measurement of 3-hydroxyanthranilic acid and anthranilic acid in urine by high-performance liquid chromatography. Agric. Biol. Chem., 55, 143-148 (1991).
  • 26) Mawatari, K., Oshida, K., Iinuma, F., and Watanabe, M., Determination of quinolinic acid in human urine by liquid chromatography with fluorimetric detection. Anal. Chim. Acta, 302, 179-183 (1995).
  • 27) Shibata, K., Tryptophan-niacin metabolism in alloxan diabetic rats and partial prevention of alloxan diabetes by nicotinamide. Agric. Biol. Chem., 51, 811-816 (1987).
  • 28) Ichiyama, A., Nakamura, S., Kawai, H., Honjo, T., Nishizuka, Y., Hayaishi, O., and Senoh, S., Studies on the metabolism of the benzene ring of tryptophan in mammalian tissue. II. Enzymic formation of α-aminomuconic acid from 3-hydroxyanthranilic acid. J. Biol. Chem., 240, 740-749 (1965).
  • 29) Shibata, K. and Iwai, K., Isolation and properties of crystalline quinolinate phosphoribosyltransferase. Biochim. Biophys. Acta, 611, 280-288 (1980).
  • 30) Yokozawa, T., Zheng, P.D., Oura, H., and Koizumi, F., Animal model of adenine-induced chronic renal failure in rats. Nephron, 44, 230-234 (1986).
  • 31) Shibata, K., Effect of ethanol feeding and growth on the tryptophan-niacin metabolism in rats. Agric. Biol. Chem., 54, 2953-2959 (1990).
  • 32) Shibata, K. and Onodera, M. Changes in the conversion rate of tryptophan-nicotinamide according to dietary fat and protein levels. Biosci. Biotechnol. Biochem., 56, 1104-1108 (1992).
  • 33) Shibata, K. Nutritional factors that regulate on the conversion of L-tryptophan to niacin. Adv. Exp. Med. Biol., 467, 711-716 (1999).
  • 34) Egashira, Y., Nakagawa, A., Ohta, T., Shibata, K., and Sanada, H. Effect of dietary linoleic acid on the tryptophan-niacin metabolism in streptozotocin-diabetic rats. Comp. Biochem. Physiol., 111, 539-545 (1995).
  • 35) Shibata, K., Morita, M., and Matsuo H. Urinary excretion of nicotinamide and its metabolites in alloxandiabetic rats fed on a niacin-free diet. Agric. Biol. Chem., 53, 3353-3354 (1989).
  • 36) Sanada, H., Miyazaki, M., and Takahashi, T., Regulation of tryptophan-niacin metabolism in diabetic rats. J. Nutr. Sci. Vitaminol., 26, 449-459 (1980).
  • 37) Sanada, H. and Miyazaki, M. Effect of pituitary hormones on α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase in rats. J. Nutr. Sci. Vitaminol., 26, 607-616 (1980).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.