208
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Membrane-bound Quinoprotein D-Arabitol Dehydrogenase of Gluconobacter suboxydans IFO 3257: A Versatile Enzyme for the Oxidative Fermentation of Various Ketoses

, , , , &
Pages 2755-2762 | Received 16 Jul 2001, Accepted 17 Aug 2001, Published online: 22 May 2014

  • 1) Matsushita, K., Toyama, H., and Adachi, O., Respiratory chains and bioenergetics of acetic acid bacteria. in “Advances in Microbial Physiology”, Vol. 36, ed. Rose, A.H. and Tempest, D.W., Academic Press, Ltd., London, pp. 247-301 (1994).
  • 2) Ameyama, M., Shinagawa, E., Matsushita, K., and Adachi, O., Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric. Biol. Chem., 49, 1001-1010 (1985).
  • 3) Sugisawa, T. and Hoshino, T., Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Nippon Nogeikagaku Kaishi (in Japanese), 73, 272 (1999).
  • 4) Shinagawa, E., Matsushita, K., Adachi, O., and Ameyama, M., Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α. Agric. Biol. Chem., 46, 135-141 (1982).
  • 5) Choi, E-S., Lee, E-H., and Rhee, S-K., Purification of a membrane-bound sorbitol dehydrogenase from Gluconobacter suboxydans. FEMS Microbiol. Lett., 125, 45-50 (1995).
  • 6) Cho, N.C., Kim, K., and Jhon, D-Y., Purification and characterization of polyol dehydrogenase from Gluconobacter melanogenus. Korean Biochem. J., 23, 172-178 (1990).
  • 7) Oikawa, T., Nakai, J., Tsukagawa, Y., and Soda, K., A novel type of D-mannitol dehydrogenase from Acetobacter xylinum: Occurrence, purification, and basic properties. Biosci. Biotechnol. Biochem., 61, 1778-1782 (1997).
  • 8) Adachi, O., Fujii, Y., Ano, Y., Moonmangmee, D., Toyama, H., Shinagawa, E., Theeragool, G., Lotong, N., and Matsushita, K., Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci. Biotechnol. Biochem., 65, 115-125 (2001).
  • 9) Dully, J.R. and Grieve, P.A., A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal. Biochem., 64, 136-141 (1975).
  • 10) Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680-685 (1970).
  • 11) Chervenka, C.H., Determination of sedimentation rates. in “A Manual of Methods for the Analytical Ultracentrifuge”, ed. Chervenka, C.H., Spinco Division of Beckman Instruments Inc., Palo Alto, California, pp. 23-37 (1970).
  • 12) Adachi, O., Matsushita, K., Shinagawa, E., and Ameyama, M., Enzymatic determination of pyrroloquinoline quinone with a quinoprotein glycerl dehydrogenase. Agric. Biol. Chem., 52, 2081-2082 (1988).
  • 13) Matsushita, K., Ohno, Y., Shinagawa, E., Adachi, O., and Ameyama, M., Membrane-bound D-glucose dehydrogenase from Pseudomonas sp.: Solubilization, purification and characterization. Agric. Biol. Chem., 44, 1505-1512 (1980).
  • 14) Ameyama, M., Shinagawa, E., Matsushita, K., and Adachi, O., D-Glucose dehydrogenase of Gluconobacter suboxydans. Solubilization, purification and characterization. Agric. Biol. Chem., 45, 851-861 (1981).
  • 15) Ameyama, M., Nonobe, M., Shinagawa, E., Matsushita, K., and Adachi, O., Purification and characterization of the quinoprotein D-glucose dehydrogenase apoenzyme from Escherichia coli. Agric. Biol. Chem., 50, 49-57 (1981).
  • 16) Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., Quinoprotein D-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: membrane-bound and soluble forms are different molecular species. Biochemistry, 28, 6276-6280 (1989).
  • 17) Hann, M.R., Tilden, B.E., and Hudson, C.S., The oxidation of sugar alcohols by Acetobacter suboxydans. J. Am. Chem. Soc., 60, 1201-1203 (1938).
  • 18) Goodwin, P.M. and Anthony, C., The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. in “Advances in Microbial Physiology”, Vol. 40, ed. Poole, R.K., Academic Press, Ltd., London, pp. 1-80 (1998).
  • 19) Keitel, T., Diehl, A., Knaute, T., Stezowski, J.J., Hohne, W., and Gorisch, H., X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J. Mol. Biol., 297, 961-974 (2000).
  • 20) Mathews, S.F., Chen, Z-W., Matsushita, K., Yamashita, T., Aoki, N., Toyama, H., and Adachi, O., Structural studies of a soluble monomeric quinohemoprotein alcohol dehydrogenase from Pseudomonas putida HK5. in “Biochemistry and Molecular Biology of Vitamin B6 and PQQ-dependent Proteins”, ed. Iriarte, A., Kagan, H.M., and Martinez-Carrion, M., Birkhauser Veerlag Basel/Swizerland, pp. 213-218 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.