79
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

The Deletion of Amino-Terminal Domain in Thermoactinomyces vulgaris R-47 α-Amylases: Effects of domain N on Activity, Specificity, Stability and Dimerization

, , &
Pages 401-408 | Received 01 Sep 2000, Accepted 05 Oct 2000, Published online: 22 May 2014

  • 1) Yamamoto, T. and Shinke, R., Classification of amylolytic enzymes, Enzyme chemistry and molecular biology of amylases and related enzymes (The Amylase Research Society of Japan, ed.), CRC Press, Florida, U.S.A., pp. 3-5 (1995).
  • 2) Komaki, T., Application of amylases and related enzymes to industry., Handbook of amylases and related enzymes (The Amylase Research Society of Japan, ed.), Pergamon Press, Oxford, U.K., pp. 195-196 (1988).
  • 3) Tonozuka, T., Mogi, S., Shimura, Y., Ibuka, A., Sakai, H., Matsuzawa, H., Sakano, Y., and Ohta, T., Comparison of primary structures and substarte specificities of two pullulan-hydrolyzing α-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. Biochim. Biophys. Acta, 1252, 35-42 (1995).
  • 4) Ibuka, A., Tonozuka, T., Matsuzawa, H., and Sakai, H., Conversion of neopullululanase-α-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanase-type enzyme. J. Biochem., 123, 275-282 (1998).
  • 5) Tonozuka, T., Sakai, H., Ohta, T., and Sakano, Y., A convenient enzymatic synthesis of 42-α-isomaltosylisomaltose using Thermoactinomyces vulgaris R-47 α-amylase II (TVA II). Carbohyd. Res., 261, 157-162 (1994).
  • 6) Tonozuka, T., Ohtuka, M., Mogi, S., Sakai, H., Ohta, T., and Sakano, Y., A neopullulanase-type α-amylase gene from Thermoactinomyces vulgaris R-47. Biosci. Biotechnol. Biochem., 57, 395-401 (1993).
  • 7) Bender, H. und Wallenfrels, K., Utersuchungen an Pullulan. II. Spezifisher Abbau ein bakterielles Enzyme. Biochem. Z., 344, 79-95 (1961).
  • 8) Kamitori, S., Kondo, S., Okuyama, K., Yokota, T., Shimura, Y., Tonozuka, T., and Sakano, Y., Crystal structure of Thermoactinomyces vulgaris R-47 α-Amylase II (TVA II) hydrolyzing cyclodextrins and pullulan at 2.6 Å Resolution. J. Mol. Biol., 287, 907-921 (1999).
  • 9) Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Ridgers, J.R., Kennard, O., Shimanouchi, T., and Tasumi, M., The protein data bank: a computer-based archival file for macro-molecular-structures. J. Mol. Biol., 122, 535-542 (1997).
  • 10) Matsuura, Y., Kusunoki, M., Harada, W., and Kakudo, M., Structure and possible catalytic residues of Taka-amylase A. J. Biochem., 95, 697-702 (1984).
  • 11) Feese, M.D., Kato. Y., Tamada, T., Kato, M., Komeda, T., Miura, Y., Hirose, M., Hondo, K., Kobayashi, K., and Kuroki, R., Crystal structure of glycosyltrehalose trehalohydrolase from the hyper-thermophilic archaeum Sulfolobus solfataricus. J. Mol. Biol., 301, 451-464 (2000).
  • 12) Qian, M., Haser, R., and Payan, F., Structure and molecular refinement of pig pancreatic α-amylase at 2.1 resolution. J. Mol. Biol., 231, 785-799 (1993).
  • 13) Katsuya, Y., Mezaki, Y., Kubota, M., and Matsuura, Y., Three-dimensional structure of Pseudomonas Isoamylase at 2.2 Å resolution. J. Mol. Biol., 281, 885-897 (1998).
  • 14) Kubota, M., Matsuura, Y., Sakai, S., and Katsube, Y., Molecular structure of B. stearothermophilus cyclodextrin glucanotransferase and analysis of substrate binding site. Denpun Kagaku, 38, 141-146 (1991).
  • 15) Klein, C. and Schulz, G.E., Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution. J. Mol. Biol., 217, 737-750 (1991).
  • 16) Lawson, C.L., van Montfort, R., Strokopytov, B., Rozeboom, H.J., Kalk, K.H., de Vries, G., Penninga, D., Dijkhuizen, L., and Dijkstra, B.W., Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J. Mol. Biol., 236, 590-600 (1994).
  • 17) Kim, J.S., Cha, S.S., Kim, H.J., Kim, T.J., Ha, N.C., Oh, S.T., Cho, H.S., Cho, M.J., Kim, M.J., Lee, H.S., Kim, J.W., Choi, K.Y., Park, K.H., and Oh, B.H., Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J. Biol. Chem., 274, 26279-26286 (1999).
  • 18) Nagashima, T., Tada, S., Kitamoto, K., Gomi, K., Kumagai, C., and Toda, H., Site-directed mutagenesis of catalytic active-site residues of Takα-amylase A. Biosci. Biotechnol. Biochem., 56, 207-210 (1992).
  • 19) Takase, K., Matsumoto, T., Mizuno, H., and Yamane, K., Site-directed mutagenesis of active site residues in Bacillus subtilis α-amylase. Biochim. Biophys. Acta, 1220, 281-288 (1992).
  • 20) Ohdan, K., Kuriki, T., and Okada, S., The deficiency of C-terminal 186 amino acids was ineffective for the enzymatic properties of Bacillus subtilus X-23 α-amylase. J. Appl. Glycosci. (in Japanese), 45, 26 (1998).
  • 21) Kunkel, T.A., Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA, 74, 488-492 (1985).
  • 22) Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951).
  • 23) Somogyi, M., Notes on sugar determination. J. Biol. Chem., 195, 19-23 (1952).
  • 24) Michal, G., Mollering, H., and Siedel, J., Methods of enzymatic analysis, 3rd ed., vol. 1, 210-221.
  • 25) Koizumi, K., Utamura, T., and Okada, Y., Analyses of homogeneous-D-gluco-oligosaccharides and -poly-saccharides (degree of polymerization up to 35) by high-performance liquid chromatography and thin-layer chromatography. J. Chromatogr., 321, 145-157 (1985).
  • 26) Lundblad, R.L., Kingdon, H.S., and Mann, G.M., Thrombin. Meth. Enzymol., 45, 156-176 (1976).
  • 27) Matsui, I., Yoneda, S., Ishikawa, K., Miyairi, S., Fukui, S., Umeyama, H., and Honda, K., Roles of the aromatic residues conserved in the active center of Sacchromycopsis α-amylase for transglycosylation and hydrolysis activity. Biochemistry, 33, 451-458 (1994).
  • 28) Penninga, D., Strokopytov, B., J. Rozeboom, H., Lawson, C.L., Dijkstra, B.W., Bergsma, J., and Dijkhuizen, L., Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Biochemistry, 34, 3368-3376 (1995).
  • 29) Knegtel, R.M.A., Strokopytov, B., Penninga, D., Faber, O.G., Rozeboom, H.J., Kalk, K.H., Dijkhuizen, L., and Dijkstra, B.W., Crystallographic studies of the interaction of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 with natural substrates and products. J. Biol. Chem., 270, 29256-29264 (1995).
  • 30) Yokota, T., Tonozuka, T., Shimura, Y., Ichikawa, K., Kamitori, S., and Sakano, Y., Structures of Thermoactinomyces vulgaris R-47 α-amylase II complexed with substrate analogues. Biosci. Biotechnol. Biochem., (2002). In press
  • 31) Kraulis, P.J., MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallog., 24, 946-950 (1991).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.