482
Views
61
CrossRef citations to date
0
Altmetric
Original Articles

Functional Analysis of the Chitin-binding Domain of a Family 19 Chitinase from Streptomyces griseus HUT6037: Substrate-binding Affinity and cis-Dominant Increase of Antifungal Function

, , , , , & show all
Pages 1084-1092 | Received 07 Dec 2001, Accepted 23 Jan 2002, Published online: 22 May 2014

  • 1) Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 280, 309-316 (1991).
  • 2) Henrissat, B. and Bairoch, A., New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 293, 781-788 (1993).
  • 3) Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S., and Vorgias, C., E., Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure, 2, 1169-1180 (1994).
  • 4) Hart, P. J., Pfluger, H. D., Monzingo, A. F., Hollis, T., and Robertus, J. D., The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 Å resolution. J. Mol. Biol., 248, 402-413 (1995).
  • 5) Tews, I., Terwissha van Scheltinga, A. C., Perrakis, A., Wilson, K. S., and Dijkatra, B. W., Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J. Am. Chem. Soc., 119, 7954-7959 (1997).
  • 6) Brameld, K. A., Shrader, W. D., Imperiali, B., and Goddard III, W. A., Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J. Mol. Biol., 280, 913-923 (1998).
  • 7) Garcia-Casado, G., Collada, C., Allona, I., Casado, R., Pacios, L. F., Aragoncillo, C., and Gomez, L., Site-directed mutagenesis of active site residues in a class I endochitinase from chestnut seeds. Glycobiology, 8, 1021-1028 (1998).
  • 8) Collinge, D. B, Kragh, K. M., Mikkelsen, J. D, Nielsen, K. K., Rasmussen, U., and Vad, K., Plant chitinases. Plant J., 3, 31-40 (1993).
  • 9) Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B., Mitsutomi, M., and Watanabe, T., A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol., 178, 5065-5070 (1996).
  • 10) Shimosaka, M., Fukumori, Y., Narita, T., Zhang, X., Kodaira, R., Nogawa, M., and Okazaki, M., The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to families 18 and 19 of the glycosyl hydrolases. J. Biosci. Bioeng., 91, 103-105 (2001).
  • 11) Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Clayton, R. A., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Umayam, L., Gill, S. R., Nelson, K. E., Read, T. D., Tettelin, H., Richardson, D., Ermolaeva, M. D., Vamathevan, J., Bass, S., Qin, H., Dragoi, I., Sellers, P., McDonald, L., Utterback, T., Fleishmann, R. D., Nierman, W. C., and White, O., DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature, 406, 477-483 (2000).
  • 12) Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J., Dougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G. G., FitzHugh, W., Fields, C. A., Gocayne, J. D., Scott, J. D., Shirley, R., Liu, L. I., Glodek, A., Kelley, J. M., Weidman, J. F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton, M. D., Utterback, T., Hanna, M. C., Nguyen, D. T., Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S., Gnehm, C. L., McDonald, L. A., Small, K. V., Fraser, C. M., Smith, H. O., and Venter, J. C., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496-512 (1995).
  • 13) Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K., Wu, Z., and Paulsen, I. T., Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406, 959-964 (2000).
  • 14) Watanabe, T., Kanai, R., Kawase, T., Tanabe, T., Mitsutomi, M., Sakuda, S., and Miyashita, K., Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology, 145, 3353-3363 (1999).
  • 15) The C. elegans Sequencing Consortium, Genome sequence of the nematode C. elegans: A platform for Investigating biology. The C. elegans Sequencing Consortium. Science, 282, 2012-2018 (1998).
  • 16) Broekaert, W. F., Parijs, J. V., Allen, A. K., and Peumans, W. J., Comparison of some molecular, enzymatic and antifungal properties of chitinase from thorn-apple, tobacco and wheat. Physiol. Mol. Plant Pathol., 33, 319-331 (1988).
  • 17) Leah, R., Tommerup, H., Svendsen, I., Mundy, J., Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem., 266. 1564-1573 (1991).
  • 18) Schlumbaum, A., Mauch, F., Vögeli, U., and Boller, T., Plant chitinases are potent inhibitors of fungal growth. Nature, 324, 365-367 (1986).
  • 19) Roberts, W. K. and Selitrennikoff, C. P., Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol., 134, 169-176 (1988).
  • 20) Iseli, B., Boller, T., and Neuhaus, J. M., The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol., 103, 221-226 (1993).
  • 21) Raikhel, N. V., Lee, H.-I., and Broekaert, W. F., Structure and function of chitin binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 591-615 (1993).
  • 22) Shinshi, H., Neuhas, J. M., Ryals, J., Meins, F. Jr., Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol. Biol., 14, 357-368 (1990).
  • 23) Vieira, J. and Messing, J., The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene, 19, 259-268 (1982).
  • 24) Manoil, C. and Beckwith, J., A genetic approach to analyzing membrane protein topology. Science, 233, 1403-1408 (1986).
  • 25) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685 (1970).
  • 26) Imoto, T. and Yagishita, K., A simple activity measurement of lysozyme. Agric. Biol. Chem., 35, 1154-1156 (1971).
  • 27) Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T., How to measure and predict the molar absorption coefficient of a protein. Protein Sci., 4, 2411-23 (1995).
  • 28) Yanase, Y., Fukamizo, T., Hayashi, K., and Goto, S., Retention of anomeric form in lysozyme-catalyzed reaction. Arch. Biochem. Biophys., 253, 168-175 (1987).
  • 29) Raphael, L., Rina, K., and Eva S., Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb. Technol., 7, 37-41 (1985).
  • 30) Jeuniaux, C., Chitinase. Methods Enzymol., 8, 644-650 (1966).
  • 31) Yamada, H. and Imoto, T., A convenient synthesis of glycolchitin, a substrate of lysozyme. Carbohydr. Res., 92, 160-162 (1981).
  • 32) Sugiyama, J., Boisset, C., Hashimoto, M., and Watanabe, T., Molecular directionality of beta-chitin biosynthesis. J. Mol. Biol., 286, 247-255 (1999).
  • 33) Hashimoto, M., Ikegami, T., Seino, S., Ohuchi, N., Fukada, H., Sugiyama, J., Shirakawa, M., and Watanabe, T., Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J. Bacteriol., 182, 3045-3054 (2000).
  • 34) Ikegami, T., Okada, T., Hashimoto, M., Seino, S., Watanabe, T., and Shirakawa, M., Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1. J. Biol. Chem., 275, 13654-61 (2000).
  • 35) Brun, E., Moriaud, F., Gans, P., Blackledge, M. J., Barras, F., and Marion, D., Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi. Biochemistry, 36, 16074-86 (1997).
  • 36) Simpson, H. D. and Barras, F., Functional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase. J. Bacteriol., 181, 4611-4616 (1999).
  • 37) Kraulis, J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J., and Gronenborn, A. M., Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry- dynamical simulated annealing. Biochemistry, 28, 7241-7257 (1989).
  • 38) Xu, G. Y., Ong, E., Gilkes, N. R., Kilburn, D. G., Muhandiram, D. R., Harris-Brandts, M., Carver, J. P., Kay, L. E., and Harvey, T. S., Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry, 34, 6993-7009 (1995).
  • 39) Tormo, J., Lamed, R., Chirino, A. J., Morag, E., Bayer, E. A., Shoham, Y., and Steitz, T. A., Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J., 15, 5739-5751 (1996).
  • 40) Hejgaard, J., Jacobsen, S., Bjorn, S. E., and Kragh, K. M., Antifungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett., 307, 389-392 (1992).
  • 41) Koo, J. C., Lee, S. Y., Chun, H. J., Cheong, Y. H., Choi, J. S., Kawabata, S., Miyagi, M., Tsunasawa, S., Ha, K. S., Bae, D. W., Han, C. D., Lee, B. L., and Cho, M. J., Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta., 1382, 80-90 (1998).
  • 42) Asensio, J. L., Canada, F. J., Siebert, H. C., Laynez, J., Poveda, A., Nieto, P. M., Soedjanaamadja, U. M., Gabius, H. J., and Jimenez-Barbero. J., Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chem. Biol., 7, 529-543 (2000).
  • 43) Muraki, M., Morii, H., and Harata, K., Chemically prepared hevein domains: effect of C-terminal truncation and the mutagenesis of aromatic residues on the affinity for chitin. Protein Eng., 13, 385-389 (2000).
  • 44) Irwin, D., Shin, D. H., Zhang, S., Barr, B. K., Sakon, J., Karplus, P. A., and Wilson, D. B., Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol., 180, 1709-1714 (1998).
  • 45) Uchiyama, T., Katouno, F., Nikaidou, N., Nonaka, T., Sugiyama, J., and Watanabe, T., Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J. Biol. Chem., 276, 41343-41349 (2001).
  • 46) Wiseman, T., Williston, S., Brandts, J. F., and Lin, L.-N., Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem., 179, 131-137 (1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.