88
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Structure of Genes for Hsp30 from the White-rot fungus Coriolus versicolor and the Increase of their Expression by Heat Shock and Exposure to a Hazardous Chemical

&
Pages 1567-1570 | Received 11 Dec 2001, Accepted 14 Mar 2002, Published online: 22 May 2014

  • 1) Eriksson, K.-E. and Kolar, M.-C., Studies on microbial and chemical conversions of chlorolignins. Environ. Sci. Technol., 19, 1086-1089 (1985).
  • 2) Bumpus, J. A. and Aust, S. D., Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. Bioessays, 6, 166-170 (1987).
  • 3) Hammel, K. E., Organopollutant degradation by ligninolytic fungi. Enzyme Microb. Technol., 11, 776-777 (1989).
  • 4) Valli, K. and Gold, M. H., Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J. Bacteriol., 173, 345-352 (1991).
  • 5) Iimura, Y., Hartikainen, P., and Tatsumi, K., Dechlorination of tetrachloroguaiacol by laccase of white-rot basidiomycete Coriolus versicolor. Appl. Microbiol. Biotechnol., 45, 434-439 (1996).
  • 6) Iimura, Y. and Tatsumi, K., Isolation of mRNAs induced by a hazardous chemical in white-rot fungus, Coriolus versicolor, by differential display. FEBS Lett., 412, 370-374 (1997).
  • 7) Regnacq, M. and Boucherie, H., Isolation and sequence of HSP30, a yeast heat-shock gene coding for a hydrophobic membrane protein. Curr. Genet., 23, 435-442 (1993).
  • 8) Aljinovic, G. and Pohl, T. M., Sequence and analysis of 24 kb on chromosome II of Saccharomyces cerevisiae. Yeast, 11, 475-479 (1995).
  • 9) Pleofsky-Vig, N. and Brambl, R., Gene sequence and analysis of hsp30, a small heat shock protein of Neurospora crassa which associates with mitochondria. J. Biol. Chem., 265, 15432-15440 (1990).
  • 10) Kusakabe, T., Koga, K., and Sugimoto, Y., Isolation and characterization of cDNA and genomic promoter region for a heat shock protein 30 from Aspergillus nidulans. Biochim. Biophys. Acta., 1219, 555-558 (1994).
  • 11) Southgate, R., Ayme, A., and Voellmy, R., Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J. Mol. Biol., 165, 35-57 (1983).
  • 12) Breathnach, R. and Chambon, P., Organization and expression of eucaryotic split genes coding for proteins. Annu. Rev. Biochem., 50, 349-383 (1981).
  • 13) Kozak, M., Possible role of flanking nucleotides in recognition of AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res., 12, 857-872 (1981).
  • 14) Amin, J., Ananthan, J., and Voellmy, R., Key features of heat shock regulatory elements. Mol. Cell. Biol., 8, 3761-3769 (1988).
  • 15) Sorger, P. K., Heat shock factor and the heat shock response. Cell, 65, 363-365 (1991).
  • 16) Fujisawa-Sehara, A., Sogawa, K., Yamane, M., and Fujii-Kuriyama, Y., Characterization of xenobiotic responsive elements upstream from the drug-metabolizing cytochrome P-450c gene: a similarity to glucocorticoid regulatory elements. Nucleic Acids Res., 15, 4179-4191 (1987).
  • 17) Schueller, C., Brewster, J. C., Alexander, M. R., Gustin, M. C., and Ruis, H., The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J., 13, 4382-4389 (1994).
  • 18) Wieser, R., Adam, G., Wanger, A., Schuller, C., Marchler., G., Ruis, H., Krawiec, Z., and Bilinski, T., Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J. Biol. Chem., 166, 12406-12411 (1991).
  • 19) Marchler, G., Schuller, C., Adam, G., and Ruis, H. A., Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J., 12, 1997-2003 (1993).
  • 20) Treger, J. M., Magee, T. R., and McEntee, K., Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun., 243, 13-19 (1998).
  • 21) Amin, J., Mestril, R., Schiller, P., Dreano, M., and Vorllmy, R., Organization of the Drosophila melanogaster hsp70 heat shock regulation unit. Mol. Cell. Biol., 7, 1055-1062 (1987).
  • 22) Pelham, H. R. B., A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell, 30, 517-528 (1982).
  • 23) Parker, C. S. and Topol, J., A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell, 37, 273-283 (1984).
  • 24) Wu, C., An exonuclease protection assay reveals heat-shock element and TATA box DNA-binding proteins in crude nuclear extracts. Nature, 317, 84-87 (1985).
  • 25) Seymour, I. J. and Piper, P. W., Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology, 145, 231-239 (1999).
  • 26) Straus, D. B., Walter, W. A., and Gross, C. A., The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature, 329, 348-351 (1987).
  • 27) Gething, M.-J. and Sambrook, J., Protein folding in the cell. Nature, 355, 33-45 (1992).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.