204
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Characteristics of Lysophosphatidylcholine in Its Inhibition of Taurine Uptake by Human Intestinal Caco-2 Cells

, , , &
Pages 730-736 | Received 30 Aug 2001, Accepted 09 Dec 2001, Published online: 22 May 2014

  • 1) Kendler, B. S., Taurine: an overview of its role in preventive medicine. Prev. Ned., 18, 79-100 (1989).
  • 2) Stapleton, P. P., O'Flaherty, L., Redmond, H. P., and Bouchier-Hayes, D., Host defence—a role for the amino acid taurine? J.P.E.N., 22, 42-48 (1998).
  • 3) Redmond, H. P., Stapleton, P. P., Neary, P., and Bouchier-Hayes, D., Immunonutrition: the role of taurine. Nutrition, 14, 599-604 (1998).
  • 4) Sturman, J. A., Taurine in development. Physiol. Rev., 73, 119-147 (1993).
  • 5) Miyamoto, Y., Tiruppathi, C., Ganapathy, V., and Leibach, F. H., Active transport of taurine in rabbit jejunal brush-border membrane vesicles. Am. J. Physiol., 257, G65-G72 (1989).
  • 6) Shimizu, M. and Satsu, H., Physiological significance of taurine and the taurine transporter in intestinal epithelial cells. Amino Acids, 19, 605-614 (2000).
  • 7) Satsu, H., Miyamoto, Y., and Shimizu, M., Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. Biochim. Biophys. Acta, 1419, 89-96 (1999).
  • 8) Satsu, H., Watanabe, H., Arai, S., and Shimizu, M., Characterization and regulation of taurine transport in Caco-2 human intestinal cells. J. Biochem., 121, 1082-1087 (1997).
  • 9) Wright, E. M., Loo, D. D. F., Panayotova- Heiermann, M., Hyrayama, B. A., Turk, E., Eskandari, S., and Lam, J. T., Structure and function of the Na+/glucose cotransporter. Acta Physiol. Scand., 163 (Suppl. 643), 257-264 (1998).
  • 10) McGivan, J. D. and Pastor-Anglada, M., Regulatory and molecular aspects of mammalian amino acid transport. Biochem. J., 299, 321-334 (1994).
  • 11) Meredith, D. and Boyd, C. A. R., Oligopeptide transport by epithelial cells. J. Membrane Biol., 145, 1-12 (1995).
  • 12) Kobayashi, Y., Suzuki, M., Satsu, H., Arai, S., Hara, Y. Suzuki, Y., Miyamoto, Y., and Shimizu, M., Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J. Agric. Food Chem., 48, 5618-5623 (2000).
  • 13) Ishizuka, K., Kanayama, A., Satsu, H., Miyamoto, Y., Furihata, K., and Shimizu, M., Identification of a taurine transport inhibitory substance in sesame seeds. Biosci. Biotechnol. Biochem., 64, 1166-1172 (2000).
  • 14) Helenius, A., and Simons, K., Solubilization of membranes by detergents. Biochim. Biophys. Acta., 415, 29-79 (1975).
  • 15) Egan, R. W., Hydrophile-lipophile balance and critical micelle concentration as key factors influencing surfactant disruption of mitochondrial membranes. J. Biol Chem., 251, 4442-4447 (1976).
  • 16) Weltzien, H. U., Cytotoxic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys. Acta, 59, 259-287 (1979).
  • 17) Kikuta, K., Sawamura, T., Miwa, S., Hashimoto, N., and Masaki, T., High-affinity arginine transport of bovine aortic endothelial cells is impaired by lysophosphatidylcholine. Circ. Res., 83, 1088-1096 (1998).
  • 18) Ousman, S. S. and David, S., Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia, 30, 92-104 (2000).
  • 19) Nishi, E., Kume, N., Ochi, H., Moriwaki, H., Wakatsuki, Y., Higashiyama, S., Taniguchi, N., and Kita, T., Lysophosphatidylcholine increases expression of heparine-binding epidermal growth factor-like growth factor in human T lymphocytes. Circ. Res., 80, 638-644 (1997).
  • 20) Durante, W., Liao, L., Peyton, K. J., and Schafer, A. I., Lysophosphatidyl-choline regulates cationic amino acid transport and metabolism in vascular smooth muscle cells. Role in polyamine biosynthesis. J. Biol. Chem., 272, 30154-30159 (1997).
  • 21) Muir, L. V., Born, E., Mathur, S. N., and Field, F. J., Lysophosphatidylcholine increases 3-hydroxy-methylglutaryl-coenzyme A reductase gene expression in CaCo-2 cells. Gastroenterology, 110, 1065-1076 (1996).
  • 22) Lundbaek, J. A. and Andersen, O. S., Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol., 104, 645-673 (1994).
  • 23) Fujii, T., Tamura, A., Fujii, H., Miwa, I., and Okuda, J., Effect of exogenous lipids incorporated into the membrane of human erythrocytes on its glucose transport activity. Biochem. Int., 12, 873-879 (1986).
  • 24) Im, W. B., Blakeman, D. P., and Davis, J. P., Effect of lysophosphatidyl-choline on K+-transport in rat heavy gastric membranes enriched with (H+–K+)-ATPase. Biochem. Biophys. Res. Commun., 146, 840-848 (1987).
  • 25) Rikitake, Y., Hirata, K., Kawashima, S., Takeuchi, S., Shimokawa, Y., Kojima, Y., Inoue, N., and Yokoyama, M., Signaling mechanism underlying COX-2 induction by lysophosphatidylcholine. Biochem Biophys. Res. Commun., 281, 1291-1297 (2001).
  • 26) Lambert, I. H. and Falktoft, B., Lysophosphatidylcholine induces taurine release from Hela cells. J. Membrane. Biol., 176, 175-185 (2000).
  • 27) Weihrauch, J. L. and Son, Y.-S., The phospholipid content of foods. J. Am. Oil Chem. Soc., 60, 1971-1978 (1983).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.