153
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Gene Expression during Pi Deficiency in Pholiota nameko: Accumulation of mRNAs for Two Transporters

, , , &
Pages 790-800 | Received 01 Oct 2001, Accepted 29 Nov 2001, Published online: 22 May 2014

  • 1) Oshima, Y., Regulatory circuits for gene expression: The metabolism of galactose and phosphatase. In “The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression”, eds. Strathern J. N., Jones E. W., and Broach J. R., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 159-180 (1982).
  • 2) Johnston, M. and Carlson, M., Regulation of carbon and phosphate utilization. In “The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression”, eds. Jones E. W., Pringle J. R., and Broach J. R., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 193-281 (1992).
  • 3) Toh-e, A., Kakimoto, S., and Oshima, Y., Genes coding for the structure of the acid phosphatase in Saccharomyces cerevisiae. Mol. Gen. Genet., 143, 65-70 (1975).
  • 4) Arima, K., Oshima, T., Kubota, I., Nakamura, N., Mizunaga, T., and Toh-e, A., The nucleotide sequence of the yeast PHO5 gene: a putative precursor of repressible acid phosphatase contains a signal peptide. Nucleic Acids Res., 11, 1657-1672 (1983).
  • 5) Bajwa, W., Meyhack, B., Rudolph, H., Schweingruber, A.-M., and Hinnen, A., Structural analysis of two tandemly repeated acid phosphatase genes in yeast. Nucleic Acids Res., 12, 7721-7739 (1984).
  • 6) Sengstag, C. and Hinnen, A., The sequence of the Saccharomyces cerevisiae gene PHO2 codes for a regulatory protein with unusual amino acid composition. Nucleic Acids Res., 15, 233-246 (1987).
  • 7) Yoshida, K., Kuromitsu, Z., Ogawa, N., and Oshima, Y., Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Gen. Genet., 217, 31-39 (1989).
  • 8) Ogawa, N. and Oshima, Y., Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol., 10, 2224-2236 (1990).
  • 9) Baldwin, J. C., Karthikeyan, A. S., and Raghothama, K. G., LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol., 125, 728-737 (2001).
  • 10) Phongdara, A., Merckelbach, A., Keup, P., Gellissen, G., and Hollenberg, C. P., Cloning and characterization of the gene encoding a repressible acid phosphatase (PHO1) from the methylotrophic yeast Hansenula polymorpha. Appl. Microbiol. Biotechnol., 50, 77-84 (1998).
  • 11) Wasaki, J., Omura, M., Osaki, M., Ito, H., Matsui, H., Shinano, T., and Tadano, T., Structure of a cDNA for an acid phosphatase from phosphate-deficient lupin (Lupinus albus L.) roots. Soil Sci. Plant Nutr., 45, 439-449 (1999).
  • 12) Bariola, P. A., Howard, C. J., Taylor, C. B., Verburg, M. T., Jaglan, V. D., and Green, P. J., The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J., 6, 673-685 (1994).
  • 13) Kock, M., Loffler, A., Abel, S., and Glund, K., cDNA structure and regulatory properties of a family of starvation-induced ribonucleases from tomato. Plant Mol. Biol., 27, 477-485 (1995).
  • 14) Bun-ya, M., Nishimura, M., Harashima, S., and Oshima, Y., The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol. Cell. Biol., 11, 3229-3238 (1991).
  • 15) Harrison, M. J. and van Buuren, M. L., A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature (London), 378, 626-629 (1995).
  • 16) Kai, M., Masuda, Y., Kikuchi, Y., Osaki, M., and Tadano, T., Isolation and characterization of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter. Soil Sci. Plant Nutr., 43, 227-235 (1997).
  • 17) Lui, C., Muchhal, U. S. Uthappa, M., Kononowicz, A. K., and Raghothama, K. G., Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol., 116, 91-99 (1998).
  • 18) Okumura, S., Mitsukawa, N., Shirano, Y., and Shibata, D., Phosphate transporter gene family of Arabidopsis thaliana. DNA Res., 5, 261-269 (1998).
  • 19) Malboobi, M. A. and Lefebvre, D. D., Isolation of cDNA clones of genes with altered expression levels in phosphate-starved Brassica nigra suspension cells. Plant Mol. Biol., 28, 859-870 (1995).
  • 20) Malboobi, M. A. and Lefebvre, D. D., A phosphate-starvation inducible β-glucosidase gene (psr3.2) isolated from Arabidopsis thaliana is a member of a distinct subfamily of the BGA family. Plant Mol. Biol., 34, 57-68 (1997).
  • 21) Dumont, F., Joris, B., Gumusboga, A., Bruyninx, M., and Loppes, R., Isolation and characterization of cDNA sequences controlled by inorganic phosphate in Chlamydomonas reinhardtii. Plant Sci., 89, 55-67 (1993).
  • 22) Lui, C., Muchhal, U. S., and Raghothama, K. G., Differential expression of TPSI1, a phosphate starvation-induced gene in tomato. Plant Mol. Biol., 33, 867-874 (1997).
  • 23) Burleigh, S. H. and Harrison, M. J., The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol., 199, 241-248 (1999).
  • 24) Wykoff, D. D., Grossman, A. R., Weeks, D. P., Usuda, H., and Shimogawara, K., Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc. Natl. Acad. Sci. USA, 96, 15336-15341 (1999).
  • 25) Joh, T., Malick, D. H., Yazaki, J., and Hayakawa, T., Purification and characterization of secreted acid phosphatase under phosphate-deficient condition in Pholiota nameko. Mycoscience, 37, 65-70 (1996a).
  • 26) Joh, T., Tasaki, Y., Yazaki, J., and Hayakawa, T., Changes in soluble proteins in the mycelia and the culture filtrate of Pholiota nameko in a phosphate-deficient culture. Nippon Kingakkai kaihou (in Japanese), 37, 147-154 (1996b).
  • 27) Joh, T., Tasaki, Y., Hara, T., and Hayakawa, T., Induction and secretion of RNA-degrading enzymes by phosphate deficiency in Pholiota nameko. Biosci. Biotechnol. Biochem., 65, 2561-2564 (2001).
  • 28) Tasaki, Y., A. Azwan, Hara, T., and Joh, T., Effect of phosphate deficiency on growth and protein profile in three strains of Pholiota nameko. Mycoscience, 42, 489-498 (2001).
  • 29) Joh, T., Tasaki, Y., Yazaki, J., and Hayakawa, T., Electrophoretic analysis of soluble proteins specifically synthesized under phosphate deficiency in the mycelia of Pholiota nameko. Mycoscience, 39, 195-198 (1998).
  • 30) Shirzadegan, M., Christie, P., and Seemann, J. R., An efficient method for isolation of RNA from tissue cultured plant cells. Nucleic Acids Res., 19, 6055 (1991).
  • 31) Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389-3402 (1997).
  • 32) Jones, D. T., Taylor, W. R., and Thornton, J. M., A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry, 33, 3038-3049 (1994).
  • 33) Hofmann, K., Bucher, P., Falquet, L., and Bairoch, A., The PROSITE database, its status in 1999. Nucleic Acids Res., 27, 215-219 (1999).
  • 34) Wagner, D. B., Furnier, G. R. Saghai-Maroof, M. A., Williams, S. M., Dancik, B. P., and Allard, R. W., Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc. Natl. Acad. Sci. USA, 84, 2097-2100 (1987).
  • 35) Kyte, J. and Doolittle, R. F., A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157, 105-132 (1982).
  • 36) Sor, F., Cheret, G., Fabre, F., Faye, G., and Fukuhara H., Yeast sequencing reports: Sequence of the HMR region on chromosome III of Saccharomyces cerevisiae. Yeast, 8, 215-222 (1992).
  • 37) Young, C., McMillan, L., Telfer, E., and Scott, B., Molecular cloning and genetic analysis of an indolediterpene gene cluster from Penicillium paxilli. Mol. Microbiol., 39, 754-764 (2001).
  • 38) Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S., and Shinozaki, K., Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol., 33, 217-224 (1992).
  • 39) Pao, S. S., Paulsen, I. T., and Saier, M. H. Jr., Major facilitator superfamily. Micro. Mol. Biol. Rev., 62, 1-34 (1998).
  • 40) Raghothama, K. G., Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 665-693 (1999).
  • 41) Furihata, T., Suzuki, M., and Sakurai, H., Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant Cell Physiol., 33, 1151-1157 (1992).
  • 42) Ullrich-Eberius, C. I., Novacky, A., and van Bel, A. J. E., Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta, 161, 46-52 (1984).
  • 43) Botero, L. M., Al-Niemi, T. S., and Mcdermott, T. R., Characterization of two inducible phosphate transport systems in Rhizobium tropici. Appl. Environ. Microbiol., 66, 15-22 (2000).
  • 44) Tamai, Y., Toh-e, A., and Oshima, Y., Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae. J. Bacteriol., 164, 964-968 (1985).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.