247
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Induction Mechanism of 3-Hydroxy-3-methylglutaryl-CoA Reductase in Potato Tuber and Sweet Potato Root Tissues

, &
Pages 1007-1017 | Received 30 Oct 2002, Accepted 15 Jan 2003, Published online: 22 May 2014

  • 1) Lange, B. M., Rujan, T., Martin, W., and Croteau, R., Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA, 97, 13172-13177 (2000).
  • 2) Schwender, J., Seemann, M., Lichtenthaler, H. K., and Rohmer, M., Biosynthesis of isoprenoids (catotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via novel pyruvate/glyceraldehydes 3-phosphate nonmevalonate pathway in the green alga Scenedesmus obliquus. Biochem. J., 316, 73-80 (1996).
  • 3) Newman, J. D., and Chappell, J., Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit. Rev. Biochem. Mol. Biol., 34, 95-106 (1997).
  • 4) Bach, T. J., Synthesis and metabolism of mevalonic acid in plnats. Plant Physiol. Biochem., 25, 163-178 (1987).
  • 5) Chappell, J., Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 521-547 (1995).
  • 6) Brown, M. S., and Goldstein, J. L., Regulation of the mevalonate pathway. Nature, 343, 425-430 (1990).
  • 7) Oba, K., Kondo, K., Doke, N., and Uritani, I., Induction of 3-hydroxy-3-methylglutaryl CoA reductase in potato tubers after cutting, fungal infection or chemical treatment and some properties of the enzyme. Plant Cell Physiol., 26, 873-880 (1985).
  • 8) Suzuki, H., Oba, K., and Uritani, I., The occurrence and some properties of 3-hydroxy-3methylgluraryl coenzyme A reductase in sweet potato roots infected by Ceratocystis fimbriata. Physiol. Plant Patholo., 7, 265-276 (1975).
  • 9) Oba, K., Oga, K., and Uritani, I., Metabolism of Ipomeamarone in sweet potato root slices before and after treatment with mercuric chloride or infection with Ceratocystis fimbriata. Phytochemistry, 21, 1921-1925 (1982).
  • 10) Ito, R., Oba, K., and Uritani, I., Mechanism for the induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase in HgCl2-treated sweet potato root tissue. Plant Cell Physiol., 20, 867-874 (1979).
  • 11) Jelesko, J. G., Jenkins, S. M., Rodriguez-Concepcion, M., and Gruissem, W., Regulation of tomato hmg1 during cell proliferation and growth. Planta, 208, 310-318 (1999).
  • 12) Godoy-Hernandez, G. C., Chappell, J., Devarenne, T. P., Garcia-Pineda, E., Guevara-Garcia, A. A., and Lozoya-Gloria, E., Antisense expression of hmg1 from Arabidopsis thaliana encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase reduces isoprenoid production in transgenic tobacco plants. J. Plant Physiol., 153, 415-424 (1998).
  • 13) Bhattacharyya, M. K., Paiva, N. L., Dixon, R. A., Korth, K. L., and Stermer, B. A., Features of the hmg1 subfamily of genes encoding HMG-CoA reductase in potato. Plant Mol. Biol., 28, 1-15 (1995).
  • 14) Yang, Z., Park, H., Lacy, G. H., and Cramer, C. L., Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge. Plant Cell, 3, 397-405 (1991).
  • 15) Burnett, R. J., Maldonado-Mendoza, I. E., McKnight, T. D., and Nessler, C. L., Expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate. Plant Physiol., 103, 41-48 (1993).
  • 16) Yoshioka, H., Miyabe, M., Hayakawa, Y., and Doke, N., Expression of genes for phenylalanine ammonia-lyase and 3-hydroxy-3-methylglutaryl CoA reductase in aged potato tubers infected with Phytophthora infestans. Plant Cell Physiol., 37, 81-90 (1996).
  • 17) Caelles, C., Ferrer, A., Balcells, L., Hegardt, F. G., and Boronat, A., Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol. Biol., 13, 627-638 (1989).
  • 18) Genschik, P., Criqui, M.-C., Parmentier, Y., Marbach, J., Durr, A., Fleck, J., and Jamet, E., Isolation and characterization of a cDNA encoding a 3-hydroxy-3-methylglutaryl coenzyme A reductase from Nicotiana sylvestris. Plant Mol. Biol., 20, 337-341 (1992).
  • 19) Choi, D., Ward, B. L., and Bostock, R. M., Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell, 4, 1333-1344 (1992).
  • 20) Korth, K. L., Stermer, B. A., Bhattacharyya, M. K., and Dixon, R. A., HMG-CoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissue. Plant Mol. Biol., 33, 545-551 (1997).
  • 21) Chye, M.-L., Tan, C.-T., and Chua, N.-H., Three genes encode 3-hydroxy-3-methylglutaryl coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Mol. Biol., 19, 473-484 (1992).
  • 22) Park, H., Denbow, C. J., and Cramer, C. L., Structure and nucleotide sequence of tomato hmg2 encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol. Biol., 20, 327-331 (1992).
  • 23) Loguercio, L. L., Scott, H. C., Trolinder, N. L., and Wilkins, T. A., HMG-CoA reductase gene family in cotton (Gossypium hirsutum L.): unique structural features and differential expression of hmg2 potentially associated with synthesis of specific isoprenoids in developing embryos. Plant Cell Physiol., 40, 750-761 (1999).
  • 24) Aoyagi, K., Beyou, A., Moon, K., Fang, L., and Ulrich, T., Isolation and characterization of cDNAs encoding wheat 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol., 102, 623-628 (1993).
  • 25) Kondo, K., and Oba, K., Purification and characterization of 3-hydroxy-3-methylglutaryl CoA reductase from potato tubers. J. Biochem., 100, 967-974 (1986).
  • 26) Doke, N., and Tomiyama, K., Effect of hyphal wall components from Phytophthora infestans on protoplasts of potato tuber tissues. Physiol. Plant Pathol., 16, 169-176 (1980).
  • 27) Shapiro, D. J., Imblum, R. L., and Rodwell, V. W., Thinlayer chromatographic assay for HMG-CoA reductase and mevalonic acid. Anal. Biochem., 31, 383-390 (1969).
  • 28) Yu-Ito, R., Oba, K., and Uritani, I., Some problems in the assay method of HMG-CoA reductase activity in sweet potato in the presence of other HMG-CoA utilizing enzymes. Agric. Biol. Chem., 46, 2087-2091 (1982).
  • 29) Hämmerling, G. J., Lemke, H., Hämmerling, U., Höhmann, C., Wallich, R., and Rajewsky, K., Monoclonal antibodies against murine cell surface antigens: Anti-H-2, Anti-Ia and Anti-T cell antibodies. Curr. Top. Microbiol. Immunol., 81, 100-106 (1978).
  • 30) McConahey, P. J., and Dixon, F. J., A method of trace iodination of proteins for immunologic studies. Int. Arch. Allergy, 29, 185-189 (1966).
  • 31) Laemmili, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685 (1970).
  • 32) Towbin, H., Staehelin, T., and Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 76, 4350-4354 (1979).
  • 33) Harlow, E., and Lane, D. C., Antibodies:A laboratory manual, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, P. 471-510 (1988).
  • 34) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-268 (1951).
  • 35) Ouchterlony, O., and Nilsson, L. A., Immunodiffusion and immunoelectrophoresis. In “Handbook of Experimental Immunology”, ed. Weir, D. M., Blackwell Scientific Publications, Oxford, P. 19.1-19.39 (1973).
  • 36) Korth, K. L., Jaggard, D. A. W., and Dixon, R. H., Developmental and light-regulated post-translational control of 3-hydroxy-3-methylglutaryl-CoA reductase levels in potato. Plant J., 23, 507-516 (2000).
  • 37) Kobayashi, T., Kato-Emori, S., Tomita, K., and Ezura, H., Detection of 3-hydroxy-3-methylglutaryl-coenzyme A reductase protein Cm-HMGR during fruit development in melon (Cucumis melo L.). Theor. Appl. Genet., 104, 779-785 (2002).
  • 38) Ishizaki, N., and Tomiyama, K., Effect of wounding or infection by Phytophthora infestans on the contents of terpenoids in potato tubers. Plant Cell Physiol., 13, 1053-1063 (1972).
  • 39) Allen, E. H., and Kuc, J., α-Solanin and α-chaconine as fungitoxic compounds in extracts of Irish potato tubers. Phytopathology, 58, 776-781 (1968).
  • 40) Kuc, J., Currier, W. W., and Shih, M. J., Terpenoid phytoalexin. In “Biochemical Aspects of Plant-Parasite Relationship”, eds. Friend, J., and Threfall, D. R., Academic Press, London, pp. 225-237 (1976).
  • 41) Vollack, K. U., Dittrich, B., Ferrer, A., Boronat, A., and Bach, T. J., Two radish genes for 3-hydroxy-3-methylglutaryl-CoA reductase isozymes complement mevalonate autotrophy in a yeast mutant and yield membrane-bound active enzyme. J. Plant Physiol., 143, 479-487 (1994).
  • 42) Hemmerlin, A., and Bach, T. J., Effect of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J., 14, 65-74 (1998).
  • 43) Choi, D., Bostock, R. M., Avdiushko, S., and Hildebrand, D. F., Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arrachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc. Natl. Acad. Sci. USA, 91, 2329-2333 (1994).
  • 44) Muranaka, T., Regulation of the mevalonate pathway. Chemical Regulation of Plant (in Japanese), 32, 150-159 (1997).
  • 45) Toroser, D., and Huber, S. C., 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities. Arch. Biochem. Biophys., 355, 291-300 (1998).
  • 46) Douglas, P., Pigaglio, E., Ferrer, A., Halford, N. G., and MacKintosh, C., Three spinach leaf nitrate reductase and 3-hydroxy-3-methylglutaryl CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochem. J., 325, 101-109 (1997).
  • 47) Sugden, C., Donaghy, P. G., Halford, N. G., and Hardie, D. G., Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant Physiol., 120, 257-274 (1999).
  • 48) Yoshida, S., and Muranaka, T., Approaches to unique technologies for regulation of plant growth functions. Nippon Nogeikagaku Kaishi (in Japanese), 76, 37-41 (2002).
  • 49) Dale, S., Arro, M. B., Morrice, N. G., Boronat, A., Hardie, D. G., and Ferrer, A., Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana. and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur. J. Biochem., 233, 506-513 (1995).
  • 50) Mackintosh, R. W., Davies, S. P., Clarke, P. R., Weekes, J., Gillespie, J. G., Gibb, B. J., and Hardie, D. G., Evidence for a protein kinase cascade in higher plants: 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase. Eur. J. Biochem., 209, 923-931 (1992).
  • 51) Parker, R. A., Miller, S. J., and Gibson, D. M., Phosphorylation of microsomal HMG-CoA reductase increases susceptibility to proteolytic degradation in vitro. Biochem. Biophys. Res. Commun., 125, 629-635 (1984).
  • 52) Stermer, B. A., Bianchini, G. M., and Korth, K. L., Regulation of HMG-CoA reductase activity in plants. J. Lipid Res., 35, 1133-1140 (1994).
  • 53) Oosterhaven, K., Hartmans, K. J., and Huizing, H. J., Inhibition of potato (Solanum tuberosum) sprout growth by the monoterpene S-carvone: reduction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity without effect on its mRNA level. J. Plant Physiol., 141, 463-469 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.