124
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Specific RNA Interference in psbP Genes Encoded by a Multigene Family in Nicotiana tabacum with a Short 3′-Untranslated Sequence

, &
Pages 107-113 | Received 12 Jul 2002, Accepted 10 Sep 2002, Published online: 22 May 2014

  • 1) Baulcombe, D. C., Gene silencing: RNA makes RNA make no protein. Curr. Biol., 9, R599-R601 (1999).
  • 2) Sharp, P. A., RNA interference—2001. Genes Dev., 15, 485-490 (2001).
  • 3) Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Deriver, S. E., and Mello, C. C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811 (1998).
  • 4) Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P., RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25-33 (2000).
  • 5) Elbashir, S. M., Lendeckel, W., and Tuschl, T., RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev., 15, 188-200 (2001).
  • 6) Waterhouse, P. M., Graham, M. W., and Wang, M. B., Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA, 95, 13959-13964 (1998).
  • 7) Chuang, C.-H., and Meyerowitz, E. M., Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 97, 4985-4990 (2000).
  • 8) Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott, D., Stoutjesdijk, P. A., Robinson, S. P., Gleave, A. P., Green, A. G., and Waterhouse, P. M., Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J., 27, 581-590 (2001).
  • 9) Hua, S.-B., Dube, S. K., Barnett, N. M., and Kung, S.-D., Photosystem II 23 kDa polypeptide of oxygen-evolving complex is encoded by a multigene family in tobacco. Plant Mol. Biol., 18, 997-999 (1992).
  • 10) Seidler, A., The extrinsic polypeptides of photosystem II. Biochim. Biophys. Acta, 1277, 35-60 (1996).
  • 11) Hua, S.-B., Dube, S. K., Barnett, N. M., and Kung, S.-D., Nucleotide sequence of a cDNA clone encoding 23-kDa polypeptide of the oxygen-evolving complex of photosystem II in tobacco, Nicotiana tabacum. L. Plant Mol. Biol., 16, 749-750 (1991).
  • 12) Hua, S.-B., Dube, S. K., Barnett, N. M., and Kung, S.-D., Nucleotide sequence of gene oee2-A and its cDNA encoding 23-kDa polypeptide of the oxygen-evolving complex of photosystem II in tobacco. Plant Mol. Biol., 17, 551-553 (1991).
  • 13) Sato, F., Kanda, Y., Shiga, M., Oshita, Y., Murota, K., and Yamada, Y., Characterization of OEC23 polypeptide of NaCl-adapted photoautotrophic cultured cells of tobacco. In “Photosynthesis: From Light to Biosphere”, ed. Mathis, P., Kluwers Academic Publishers, the Netherlands, pp. 601-604 (1995).
  • 14) Ifuku, K., Shiga, M., Kanda, Y., and Sato, F., Reconstitution of photosynthetic oxygen evolving activity with heterologous OEC23 expressed in E. coli. In “Photosynthesis: Mechanism and Effects” Vol. II, ed. Garab, G., Kluwers Academic Publishers, the Netherlands, pp. 1439-1442 (1998).
  • 15) Ifuku, K., and Sato, F., Importance of the N-terminal sequence of the extrinsic 23 kDa polypeptide in photosystem II in ion-retention in oxygen-evolution. Biochim. Biophys. Acta, 1546, 196-204 (2001).
  • 16) Robert, C. S., Rajagopal, S., Yang, W., Nugroho, S., Smith, L., Nguyen, T., Ravi, K. S., Dransfield, L., Harcourt, R., Vijayachandra, K., Patell, V., Sallaud, C., Desamero, N., Slamet, I., Keese, P., Kilian, A., and Jefferson, R. A., A comprehensive new set of modular vectors to allow both routine and advanced manipulations and efficient transformation of rice by both Agrobacterium and direct gene-transfer methods. Rockefeller Foundation Meeting of the International Program on Rice Biotechnology, Malacca, Malaysia, Sept. 15-19 (1997).
  • 17) Horsch, R. B., Fry, J. E., Hoffman, H. L., Eicholts, D., Rogers, S. G., and Fraley, R. T., Simple and general method for transferring genes into plants. Science, 277, 1229-1231 (1985).
  • 18) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685 (1970).
  • 19) Chomczynski, P., and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162, 156-159 (1987).
  • 20) Hamilton, A., and Baulcombe, D. A., Novel species of small antisense RNA in post-transcriptional gene silencing in plants. Science, 286, 950-952 (1999).
  • 21) Johansen, L. K., and Carrington, J. C., Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol., 126, 930-938 (2001).
  • 22) Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363-366 (2001).
  • 23) Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J., An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293-296 (2000).
  • 24) Palomares, R., Herrmann, R. G., and Oelmüller, R., Antisense RNA for components associated with the oxygen-evolving complex and the Rieske iron/sulfur protein of the tobacco thylakoid membrane suppresses accumulation of mRNA, but not of protein. Planta, 190, 305-312 (1993).
  • 25) Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. A., and Fire, A., On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107, 465-476 (2001).
  • 26) Lipardi, C., Wei, Q., and Paterson, B. M., RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 107, 297-307 (2001).
  • 27) Hamilton, A. J., Brown, S., Yuanhai, H., Ishizuka, M., Lowe, A., Soils, A. A.-G., and Grierson, D., A transgene with repeated DNA sequence causes high frequency post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J., 15, 737-746 (1998).
  • 28) Vaistij, F. E., Jones, L., and Baulcombe, D. C., Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell, 14, 857-867 (2002).
  • 29) English, J. J., Mueller, E., and Baulcombe, D. C., Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell, 8, 179-188 (1996).
  • 30) Wang, M. B., Wesley, S. V., Finnegan, E. J., Smith, N. A., and Waterhouse, P. M., Replicating satellite RNA induces sequence-specific DNA methylation and truncated transcripts in plants. RNA, 7, 16-28 (2001).
  • 31) Tuschl, T., Expanding small RNA interference. Nature Biotech., 20, 446-448 (2002).
  • 32) Thompson, J. D., Higgins, D. G., and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4680 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.