207
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Purification and Characterization of Two Isoforms of Glucose 6-Phosphate Dehydrogenase (G6PDH) from Chlorella vulgaris C-27

, , , , , , , , & show all
Pages 1888-1896 | Received 24 Feb 2003, Accepted 18 Jun 2003, Published online: 22 May 2014

  • . 1980. p. 27- 64.
  • . 1992. p. 338- 362.
  • 3) Thomashow, M. F., Molecular genetics of cold acclimation in higher plants. Advances in Genetics, 28, 99-131 (1990).
  • 4) Sadakane, H., Kabata, K., Ishibashi, K., Watanabe, T., and Hatano, S., Studies of frost hardiness in Chlorella ellipsoidea. V. The role of glucose and related compounds. Environ. Expt. Bot., 20, 297-305 (1980).
  • 5) Guy, C. L., Niemi, K. J., and Brambl, R., Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA, 82, 3673-3677 (1985).
  • 6) Hughes, M. A., and Dunn, M. A., The molecular biology of plant acclimation to low temperature. J. Exp. Bot., 47, 291-305 (1996).
  • 7) Thomashow, M. F., Role of cold-responsive genes in plant freezing tolerance. Plant Physiol., 118, 1-7 (1998).
  • 8) Gleason, F. K., Glucose-6-phosphate dehydrogenase from the cyanobacterium, Anabaena sp. PCC 7120: purification and kinetics of redox modulation. Arch. Biochem. Biophys., 334, 277-283 (1996).
  • 9) Graeve, K., Schaewen, A. V., and Sheibe, R., Purification, characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solanum tuberosm L.). Plant Journal, 5, 353-361 (1994).
  • 10) Tian, W. N., Braunstein, L. D., Pang, J., Stuhlmeier, K. M., Li, Q. C., Tian, X., and Stanton, R. C., Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol. Chem., 273, 10609-10617 (1998).
  • 11) Gosling, P. J., and Ross, J. D., Pentose phosphate metabolism during dormancy breakage in Corylus avellana L. Planta, 148, 362-366 (1980).
  • 12) Wagner, A. M., Kneppers, T. J. A., Kroon, B. M., and Van Der Plas, L. H. W., Enzymes of the pentose phosphate pathway in callus-forming potato-tuber discs grown at various temperatures. Plant Sci., 51, 159-164 (1987).
  • 13) Bogatek, R., and Lewak, S., Effects of cyanide and cold treatment on sugar catabolism in apple seeds during dormancy removal. Physiol. Plant., 73, 406-411 (1988).
  • 14) Storey, K. B., Keefe, D., Kourtz, L., and Storey, J. M., Glucose-6-phosphate dehydrogenase in cold hardy insects: kinetic properties, freezing stabilization, and control of hexose monophosphate shunt activity. Insect Biochem., 21, 157-164 (1991).
  • 15) Bredemeijer, G. M. M., and Esselink, G., Glucose 6-phosphate dehydrogenase during cold hardening in Lolium perenne. J. Plant Physiol., 145, 565-569 (1995).
  • 16) Miki, T., Tsujimoto, Y., Miyabe, S., Sugiyama, K., Izawa, S., Inoue, Y., and Kimura, A., Oxidative stress response in yeast: purification and some properties of oxidative stress-inducible glucose-6-phosphate dehydrogenase from Hansenula mrakii. Biosci. Biotechnol. Biochem., 60, 966-970 (1996).
  • 17) Kranner, I., and Grill, D., Desiccation and the subsequent recovery of cryptogamics that are resistant to drought. Phyton: Annales Rei Botanicae, 37, 139-150 (1997).
  • 18) Ursini, M. V., Parrella, A., Rosa, G., Salzano, S., and Martini, G., Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress. Biochem. J., 323, 801-806 (1997).
  • . 1982. p. 157- 167.
  • . 1987. p. 101- 115.
  • 21) Izawa, S., Maeda, K., Miki, T., Mano, J., Inoue, Y., and Kimura, A., Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem. J., 330, 811-817 (1998).
  • 22) Levy, R., Glucose-6-phosphate dehydrogenases. Adv. Enzymol., 48, 97-192 (1979).
  • 23) Anderson, B. M., Wise, D. J., and Anderson, C. D., Azotobacter vinelandii glucose 6-phosphate dehydrogenase: properties of NAD- and NADP-linked reactions. Biochim. Biophys. Acta, 1340, 268-276 (1997).
  • 24) Tsai, C. S., and Chen, Q., Purification and kinetic characterization of hexokinase and glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe. Biochem. Cell Biol., 76, 107-113 (1998).
  • 25) Srivastava, D. K., and Anderson, L. E., Isolation and characterization of light- and dithiothreitol-modulatable glucose-6-phosphate dehydrogenase from pea chloroplasts. Biochim. Biophys. Acta, 724, 359-369 (1983).
  • 26) Fickenscher, K., and Scheibe, R., Purification and properties of the cytoplasmic glucose-6-phosphate dehydrogenase from pea leaves. Arch. Biochem. Biophys., 247, 393-402 (1986).
  • 27) Wenderoth, I., Scheibe, R., and Schaewen, A. V., Identification of the cysteine residues involves in redox modification of plant plastidic glucose-6-phosphate dehydrogenase J. Biol. Chem., 272, 26985-26990 (1997).
  • 28) Wendt, U. K., Hauschild, R., Lange, C., Pietersma, M., Wenderoth, I., and von Schawen, A., Evidence for functional convergence of redox regulation in G6PDH isoforms of cyanobacteria and plants. Plant Mol. Biol., 40, 487-494 (1999).
  • 29) Watanabe, A., List of algal strains in collection at the Institute of Applied Microbiology, University of Tokyo. J. Gen. Appl. Microbiol., 6, 283-292 (1960).
  • 30) Hatano, S., Sadakane, H., Tutumi, M., and Watanabe, T., Studies on frost hardiness in Chlorella ellipsoidea. II. Effects of inhibitors of RNA and protein synthesis and surfactants on the process of hardening. Plant Cell Physiol., 17, 643-651 (1976).
  • 31) Laemmli, U. K., Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature, 227, 680-685 (1970).
  • 32) Sagisaka, S., Decrease of glucose-6-phosphate and 6-phosphogluconate dehydrogenase activities in the xylem of Populas gelrica on budding. Plant Physiol., 50, 750-755 (1972).
  • 33) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254 (1976).
  • 34) Gross, E., The cyanogen bromide reaction. Methods Enzymol., 11, 238-263 (1967).
  • 35) Kennedy, T. E., Gawinowicz, M. A., Barzilai, A., Kandel, E. R., and Sweatt, J. D., Sequencing of proteins from two-dimensional gels by using in situ digestion and transfer of peptides to polyinylidene difluoride membranes: Application to proteins associated with sensitization in Aplysia. Proc. Natl. Acad. Sci. USA, 85, 7008-7012 (1988).
  • 36) Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D., Basic local alignment search tool. J. Mol. Biol., 215, 403-410 (1990).
  • 37) Sundaram, S., Karakaya, H., Scanlan, D. J., and Mann, N. H., Multiple oligomeric forms of glucose-6-phosphate dehydrogenase in cyanobacteria and the role of OpcA in the assembly process. Microbiol., 144, 1549-1556 (1998).
  • 38) Eichhorn, M., and Corbus, B., Die glucose-6-phosphat dehydrogenase im stoffwechsel photoautotropher organismen. Biochem. Physiol. Pflanzen., 183, 449-475 (1988).
  • 39) Anderson, B. M., and Anderson, C. D., Purification and characterization of Azotobacter vinelandii glucose 6-phosphate dehydrogenase: dual coenzyme specificity. Arch. Biochem. Biophys., 321, 94-100 (1995).
  • 40) Esposito, S., Carfagna, S., Massaro, G., Vona, V., and Rigano, V. D., Glucose-6-phosphate dehydrogenase in barley roots: kinetic properties and localisation of the isoforms. Planta, 212, 627-634 (2001).
  • 41) Schaewen, A. V., Langenkamper, G., Graeve, K., Wenderoth, I., and Scheibe, R., Molecular characterization of the plastidic glucose-6-phosphate dehydrogenase from potato in comparison to its cytosolic counterpart. Plant Physiol., 109, 1327-1335 (1995).
  • 42) Anderson, L. E., Lim, N. G., and Park, K. E. Y., Inactivation of pea leaf chloroplastic and cytoplasmic glucose 6-phosphate dehydrogenase by light and dithiothreitol. Plant Physiol., 53, 835-839 (1974).
  • 43) Craig, P. A., and Dekker, E. E., Cd2+ activation of L-threonine dehydrogenase from Escherichia coli K-12. Biochim. Biophys. Acta, 957, 222-229 (1988).
  • 44) Johnson, A. R., Chen, Y.-W., and Dekker, E. E., Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cystein-38. Arch. Biochem. Biophys., 358, 211-221 (1998).
  • 45) Vallee, B. L., and Ulmer, D. D., Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem., 41, 91-128 (1972).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.