397
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Expression Profiling of Translation-associated Genes in Sporulating Bacillus subtilis and Consequence of Sporulation by Gene Inactivation

, , , , , , , & show all
Pages 2245-2253 | Received 13 Jun 2003, Accepted 24 Jul 2003, Published online: 22 May 2014

  • 1) Kraal, B., Lippmann, C., and Kleanthous, C., Translational regulation by modifications of the elongation factor Tu. Folia Microbiol. (Praha), 44, 131-141 (1999).
  • 2) Grossman, A. D., Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet., 29, 477-508 (1995).
  • 3) Losick, R., and Pero, J., Cascades of sigma factors. Cell, 25, 582-584 (1981).
  • 4) Tipper, D. J., Johnson, C. W., Ginther, C. L., Leighton, T., and Wittmann, H. G., Erythromycin-resistant mutations in Bacillus subtilis cause temperature-sensitive sporulation. Mol. Gen. Genet., 150, 147-159 (1977).
  • 5) Campbell, K. M., and Chambliss, G. H., Streptomycin-resistant, asporogenous mutant of Bacillus subtilis. Mol. Gen. Genet., 158, 193-200 (1977).
  • 6) Chambliss, G. H., and Legault-Demare, L., Functional modifications of the translational system in Bacillus subtilis during sporulation. J. Bacteriol., 132, 13-22 (1977).
  • 7) Kobayashi, H., Kobayashi, K., and Kobayashi, Y., Isolation and characterization of fusidic acid-resistant, sporulation-defective mutants of Bacillus subtilis. J. Bacteriol., 132, 262-269 (1977).
  • 8) Fortnagel, P., and Freese, E. B., Morphological stages of Bacillus subtilis sporulation and resistance to fusidic acid. J. Gen. Microbiol., 101, 299-306 (1977).
  • 9) Fawcett, P., Eichenberger, P., Losick, R., and Youngman, P., The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 97, 8063-8068 (2000).
  • 10) Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessieres, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S. C., Bron, S., Brouillet, S., Bruschi, C. V., Caldwell, B., Capuano, V., Carter, N. M., Choi, S.-K., Codani, J.-J., Connerton, I. F., Cummings, N. J., Daniel, R. A., Denizot, F., Devine, K. M., Dusterhoft, A., Ehrlich, S. D., Emmerson, P. T., Entian, K. D., Errington, J., Fabret, C., Ferrari, E., Foulger, D., Fritz, C., Fujita, M., Fujita, Y., Fuma, S., Galizzi, A., Galleron, N., Ghim, S.-Y., Glaser, P., Goffeau, A., Golightly, E. J., Grandi, G., Guiseppi, G., Guy, B. J., Haga, K., Haiech, J., Harwood, C. R., Henaut, A., Hilbert, H., Holsappel, S., Hosono, S., Hullo, M.-F., Itaya, M., Jones, L., Joris, B., Karamata, D., Kasahara, Y., Klaerr-Blanchard, M., Klein, C., Kobayashi, Y., Koetter, P., Koningstein, G., Krogh, S., Kumano, M., Kurita, K., Lapidus, A., Lardinois, S., Lauber, J., Lazarevic, V., Lee, S.-M., Levine, A., Liu, H., Masuda, S., Mauel, C., Medigue, C., Medina, N., Mellado, R. P., Mizuno, M., Moestl, D., Nakai, S., Noback, M., Noone, D., O'Reilly, M., Ogawa, K., Ogiwara, A., Oudega, B., Park, S.-H., Parro, V., Pohl, T. M., Portetelle, D., Porwollik, S., Prescott, A. M., Presecan, E., Pujic, P., Purnelle, B., Rapoport, G., Rey, M., Reynolds, S., Rieger, M., Rivolta, C., Rocha, E., Roche, B., Rose, M., Sadaie, Y., Sato, T., Scanlan, E., Schleich, S., Schroeter, R., Scoffone, F., Sekiguchi, J., Sekowska, A., Seror, S. J., Serror, P., Shin, B.-S., Soldo, B., Sorokin, A., Tacconi, E., Takagi, T., Takahashi, H., Takemaru, K., Takeuchi, M., Tamakoshi, A., Tanaka, T., Terpstra, P., Tognoni, A., Tosato, V., Uchiyama, S., Vandenbol, M., Vannier, F., Vassarotti, A., Viari, A., Wambutt, R., Wedler, E., Wedler, H., Weitzenegger, T., Winters, P., Wipat, A., Yamamoto, H., Yamane, K., Yasumoto, K., Yata, K., Yoshida, K., Yoshikawa, H.-F., Zumstein, E., Yoshikawa, H., and Danchin, A., The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature (London), 390, 249-256 (1997).
  • 11) Kanaya, S., Yamada, Y., Kudo, Y., and Ikemura, T., Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene, 238, 143-155 (1999).
  • 12) Aoki, H., Dekany, K., Adams, S. L., and Ganoza, M. C., The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis. J. Biol. Chem., 272, 32254-32259 (1997).
  • 13) Hirashima, A., and Kaji, A., Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J. Biol. Chem., 248, 7580-7587 (1973).
  • 14) Moriya, S., Tsujikawa, E., Hassan, A. K., Asai, K., Kodama, T., and Ogasawara, N., A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol. Microbiol., 29, 179-187 (1998).
  • 15) Leighton, T. J., and Doi, R. H., The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. J. Biol. Chem., 246, 3189-3195 (1971).
  • 16) Nanamiya, H., Ohashi, Y., Asai, K., Moriya, S., Ogasawara, N., Fujita, M., Sadaie, Y., and Kawamura, F., ClpC regulates the fate of a sporulation initiation sigma factor, σH protein, in Bacillus subtilis at elevated temperatures. Mol. Microbiol., 29, 505-513 (1998).
  • 17) Ohashi, Y., Chijiiwa, Y., Suzuki, K., Takahashi, K., Nanamiya, H., Hosoya, Y., Ochi, K., and Kawamura, F., The lethal effect of a benzamide derivative, 3-methoxybenzamide, can be suppressed by mutations within a cell division gene, ftsZ, in Bacillus subtilis. J. Bacteriol., 181, 1348-1351 (1999).
  • 18) Asai, K., Kawamura, F., Yoshikawa, H., and Takahashi, H., Expression of kinA and accumulation of σH at the onset of sporulation in Bacillus subtilis. J. Bacteriol., 177, 6679-6683 (1995).
  • 19) Li, X., Lindahl, L., Sha, Y., and Zengel, J. M., Analysis of the Bacillus subtilis S10 ribosomal protein gene cluster identifies two promoters that may be responsible for transcription of the entire 15-kilobase S10-spc-α cluster. J. Bacteriol., 179, 7046-7054 (1997).
  • 20) Hussey, C., Losick, R., and Sonenshein, A. L., Ribosomal RNA synthesis is turned off during sporulation of Bacillus subtilis. J. Mol. Biol., 57, 59-70 (1971).
  • 21) Hussey, C., Pero, J., Shorenstein, R. G., and Losick, R., In vitro synthesis of ribosomal RNA by Bacillus subtilis RNA polymerase. Proc. Natl. Acad. Sci. USA, 69, 407-411 (1972).
  • 22) Huang, J., Lih, C. J., Pan, K. H., and Cohen, S. N., Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes. Dev., 15, 3183-3192 (2001).
  • 23) Ohashi, Y., Ohshima, H., Tsuge, K., and Itaya, M., Far different levels of gene expression provided by an oriented cloning ststem in Bacillus subtilis and Escherichia coli. FEMS Microbiol. Lett., 221, 125-130 (2003).
  • 24) Hirochika, H., and Kobayashi, Y., Suppression of temperature-sensitive sporulation of a Bacillus subtilis elongation factor G mutant by RNA polymerase mutations. J. Bacteriol., 136, 883-893 (1978).
  • 25) Truitt, C. L., Weaver, E. A., and Haldenwang, W. G., Effects on growth and sporulation of inactivation of a Bacillus subtilis gene (ctc) transcribed in vitro by minor vegetative cell RNA polymerases (E-σ37, E-σ32). Mol. Gen. Genet., 212, 166-171 (1988).
  • 26) Wower, I. K., Wower, J., and Zimmermann, R. A., Ribosomal protein L27 participates in both 50S subunit assembly and the peptidyl transferase reaction. J. Biol. Chem., 273, 19847-19852 (1998).
  • 27) Maguire, B. A., and Wild, D. G., Mutations in the rpmBG operon of Escherichia coli that affect ribosome assembly. J. Bacteriol., 179, 2486-2493 (1997).
  • 28) Jeong, S. M., Yoshikawa, H., and Takahashi, H., Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol. Microbiol., 10, 133-142 (1993).
  • 29) Weir, J., Predich, M., Dubnau, E., Nair, G., and Smith, I., Regulation of spo0H, a gene coding for the Bacillus subtilis σH factor. J. Bacteriol., 173, 521-529 (1991).
  • . 1984. p. 101- 172.
  • 31) Farwell, M. A., Roberts, M. W., and Rabinowitz, J. C., The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol. Microbiol., 6, 3375-3383 (1992).
  • 32) Isono, K., and Isono, S., Lack of ribosomal protein S1 in Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA, 73, 767-770 (1976).
  • 33) Sorokin, A., Serror, P., Pujic, P., Azevedo, V., and Ehrlich, S. D., The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology, 141, 311-319 (1995).
  • 34) Grentzmann, G., Kelly, P. J., Laalami, S., Shuda, M., Firpo, M. A., Cenatiempo, Y., and Kaji, A., Release factor RF-3 GTPase activity acts in disassembly of the ribosome termination complex. RNA, 4, 973-983 (1998).
  • 35) Pavlov, M. Y., Freistroffer, D. V., MacDougall, J., Buckingham, R. H., and Ehrenberg, M., Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. EMBO J., 16, 4134-4141 (1997).
  • 36) Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, K., Ahikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, S. C., Bron, S., Bunai, K., Chapuis, J., Christiansen, L. C., Danchin, A., Debarbouille, M., Dervyn, E., Deuerling, E., Devine, K., Devine, S. K., Dreesen, O., Errington, J., Fillinger, S., Foster, S. J., Fujita, Y., Galizzi, A., Gardan, R., Eschevins, C., Fukushima, T., Haga, K., Harwood, C. R., Hecker, M., Hosoya, D., Hullo, M. F., Kakeshita, H., Karamata, D., Kasahara, Y., Kawamura, F., Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa, S., Ishio, I., LeCoq, D., Masson, A., Mauel, C., Meima, R., Mellado, R. P., Moir, A., Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., Ohanan, T., O'Reilly, M., O'Rourke, M., Pragai, Z., Pooley, H. M., Rapoport, G., Rawlins, J. P., Rivas, L. A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M., Sato, T., Saxild, H. H., Scanlan, E., Schumann, W., Seegers, J. F. M. L., Sekiguchi, J., Sekowska, A., Seror, S. J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., Tanaka, T., Takeuchi, M., Thomaides, H. B., Vagner, V., van Dijl, J. M., Watabe, K., Wipat, A., Yamamoto, H., Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, K., Yoshida, K., Yoshikawa, H., Zuber, U., and Ogasawara, N., Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA, 100, 4678-4683 (2003).
  • 37) Janosi, L., Ricker, R., and Kaji, A., Dual functions of ribosome recycling factor in protein biosynthesis: disassembling the termination complex and preventing translational errors. Biochimie, 78, 959-969 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.