157
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Corticosterone on Ca2+ Uptake and Myofibrillar Disassembly in Primary Muscle Cell Culture

, , , &
Pages 244-249 | Received 06 Dec 2001, Accepted 24 Sep 2002, Published online: 22 May 2014

  • 1) Goldberg, A. L., Tischler, M. E., DeMartino, G., and Griffin, G., Hormonal regulation of protein degradation and synthesis in skeletal muscle. Fed. Proc., 39, 31-36 (1980).
  • 2) Tischler, M. E., Hormonal regulation of protein degradation in skeletal and cardiac muscle. Life Sci., 28, 2569-2576 (1981).
  • 3) Kettelhut, I. C., Wing, S. S., and Goldberg, A. L., Endocrine regulation of protein breakdown in skeletal muscle. Diab. Metab. Rev., 4, 751-772 (1988).
  • 4) Odedra, B. R., Bates, P. C., and Millward, D. J., Time course of the effect of catabolic doses of corticosterone on protein turnover in rat skeletal muscle and liver. Biochem. J., 214, 617-627 (1983).
  • 5) Tomas, F. M., Munro, H. N., and Young, V. R., Effect of glucocorticoid administration on the rate of muscle protein breakdown in vivo in rats, as measured by urinary excretion of Nτ-methylhistidine. Biochem. J., 178, 139-146 (1979).
  • 6) Bird, J. W. C., Carter, J. H., Triemer, R. E., Brooks, R. M., and Spanier, A. M., Proteinases in cardiac and skeletal muscle. Fed. Proc., 39, 20-25 (1980).
  • 7) Bullard, B., Sainsbury, G., and Miller, N., Digestion of proteins associated with the Z-disc by calpain. J. Muscle Res. Cell Motil., 11, 271-279 (1990).
  • 8) Tawa, N. E., Jr., Odessey, R., and Goldberg, A. L., Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J. Clin. Invest., 100, 197-203 (1997).
  • 9) Kameyama, T., and Etlinger, J. D., Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature, 279, 344-346 (1979).
  • 10) Sugden, P. H., The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro. Biochem. J., 190, 593-603 (1980).
  • 11) Zeman, R. J., Kameyama, T., Matsumoto, K., Bernstein, P., and Etlinger, J. D., Regulation of protein degradation in muscle by calcium. J. Biol. Chem., 260, 13619-13624 (1985).
  • 12) Goodman, M. N., Differential effects of acute changes in cell Ca2+ concentration on myofibrillar and non-myofibrillar protein breakdown in the rat extensor digitorum longus musle in vitro. Biochem. J., 241, 121-127 (1987).
  • 13) Legaspi, A., Albert, J. D., Calvano, S. E., Brennan, M. F., and Lowry, S. F., Proteolysis of skeletal muscle in response to acute elevation of plasma cortisol in man. Surg. Forum, 36, 16-18 (1985).
  • 14) Kayali, A. G., Young, V. R., and Goodman, M. N., Sensitivity of myofibrillar proteins to glucocorticoid-induced muscle proteolysis. Am. J. Physiol., 252, E621-E626 (1987).
  • 15) Solomon, V., and Goldberg, A. L., Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J. Biol. Chem., 271, 26690-26697 (1996).
  • 16) Hayashi, K., Tada, O., Higuchi, K., and Ohtsuka, A., Effects of corticosterone on connectin content and protein breakdown in rat skeletal muscle. Biosci. Biotechnol. Biochem., 64, 2686-2688 (2000).
  • 17) Gomez-Munoz, A., Hales, P., Brindley, D. N., and Sancho, M. J., Rapid activation of glycogen phosphorylase by steroid hormones in cultured rat hepatocytes. Biochem. J., 262, 417-423 (1989).
  • 18) Hayashi, T., Nakai, T., and Miyabo, S., Glucocorticoids increase Ca2+ uptake and [3H]dihydropyridine binding in A7r5 vascular smooth muscle cells. Am. J. Physiol., 261, C106-C114 (1991).
  • 19) Dahlmann, B., Rutschmann, M., and Reinauer, H., Effect of starvation or treatment with corticosterone on the amount of easily releasable myofilaments in rat skeletal muscles. Biochem. J., 234, 659-664 (1986).
  • 20) Duncan, C. J., Role of calcium in triggering rapid ultrastructural damage in muscle: a study with chemically skinned fibers. J. Cell Sci., 87, 581-594 (1987).
  • 21) Belcastro, A. N., Gilchrist, J. S., Scrubb, J. A., and Arthur, G., Calcium-supported calpain degradation rates for cardiac myofibrils in diabetes: sulfhydryl and hydrophobic interactions. Mol. Cell Biochem., 135, 51-60 (1994).
  • 22) Belcastro, A. N., Albisser, T. A., and Littlejohn, B., Role of calcium-activated neutral protease (calpain) with diet and exercise. Can. J. Appl. Physiol., 21, 328-346 (1996).
  • 23) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951).
  • 24) Rosalki, S. B., An improved procedure for serum creatine phosphokinase determination. J. Lab. Clin. Med., 69, 696-705 (1967).
  • 25) Hayashi, K., Maeda, Y., Toyomizu, M., and Tomita, Y., High-performance liquid chromatographic method for the analysis of Nτ-methylhistidine in food, chicken excreta, and rat urine. J. Nutr. Sci. Vitaminol., 33, 151-156 (1987).
  • 26) Gulve, E. A., and Dice, J. F., Regulation of protein synthesis and degradation in L8 myotubes: effects of serum, insulin and insulin-like growth factors. Biochem. J., 260, 377-387 (1989).
  • 27) Williams, A. B., Decourten-Myers, G. M., Fischer, J. E., Luo, G., Sun, X., and Hasselgren, P. O., Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism. FASEB J., 13, 1435-1443 (1999).
  • 28) Hayashi, K., Kayali, A. G., and Young, V. R., Synergism of triiodothyronine and corticosterone on muscle protein breakdown. Biochim. Biophys. Acta, 883, 106-111 (1986).
  • 29) Ohtsuka, A., Hayashi, K., Noda, T., and Tomita, Y., Reduction of corticosterone-induced muscle proteolysis and growth retardation by a combined treatment with insulin, testosterone and high-protein-high-fat diet in rats. J. Nutr. Sci. Vitaminol., 38, 83-92 (1992).
  • 30) McGrath, J. A., and Goldspink, D. F., Glucocorticoid action on protein synthesis and protein breakdown in isolated skeletal muscles. Biochem. J., 206, 641-645 (1982).
  • 31) Dayton, W. R., Reville, W. J., Goll, D. E., and Stromer, M. H., A Ca2+-activated protease possibly involved in myofibrillar protein turnover: partial characterization of the purified enzyme. Biochemistry, 15, 2159-2167 (1976).
  • 32) Fagan, J. M., Waxman, L., and Goldberg, A. L., Skeletal muscle and liver contain a soluble ATP+ubiquitin-dependent proteolytic system. Biochem. J., 243, 335-343 (1987).
  • 33) Goll, D. E., Thompson, V. F., Taylor, R. G., and Christiansen, J. A., Role of the calpain system in muscle growth. Biochemie, 74, 225-237 (1992).
  • 34) Baracos, V. E., Greenberg, R. E., and Goldberg, A. L., Calcium ions and the regulation of intracellular protein breakdown in muscle. In “Calcium regulation in biological systems”, eds. Ebashi, S., Endo, M., Imahori, K., Kakiuchi, S., and Nishizuka, Y., Academic Press, pp. 227-242 (1984).
  • 35) Passaquin, A. C., Lhote, P., and Ruegg, U. T., Calcium influx inhibition by steroids and analogs in C2C12 skeletal muscle cells. Br. J. Pharmacol., 124, 1751-1759 (1998).
  • 36) Metzinger, L., Passaquin, A. C., Leijendekker, W. J., Poindron, P., and Ruegg, U. T., Modulation by prednisolone of calcium handling in skeletal muscle cells. Br. J. Pharmacol., 116, 2811-2816 (1995).
  • 37) Hayashi, K., Kayali, A. G., and Tomita, Y., Reduction of corticosterone-induced growth impairment by testosterone and its mechanism. Anim. Sci. Technol., 63, 1001-1008 (1992).
  • 38) Hunton, D. L., Lucchesi, P. A., Pang, Y., Cheng, X., Dell'Italia, L. J., and Marchase, R. B., Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J. Biol. Chem., 277, 14266-14273 (2002).
  • 39) Hayashi, K., Nagai, Y., Ohtsuka, A., and Tomita, Y., Effects of dietary corticosterone and trilostane on growth and skeletal muscle protein turnover in broiler cockerels. Br. Poult. Sci., 35, 789-798 (1994).
  • 40) Higuchi, K., Hayashi, K., Ohtsuka, A., and Tomita, Y., Calcitonin decreases corticosterone-induced skeletal muscle calpain activity. J. Nutr. Sci. Vitaminol., 42, 491-496 (1996).
  • 41) Wang, L., Luo, G. J., Wang, J. J., and Hasselgren, P. O., Dexamethasone stimulates proteasome-and calcium-dependent proteolysis in cultured L6 myotubes. SHOCK, 10, 298-306 (1998).
  • 42) Hong, D. H., and Forsberg, N. E., Effects of dexamethasone on protein degradation and protease gene expression in rat L8 myotube culture. Mol. Cell. Endocrinol., 108, 199-209 (1995).
  • 43) Thompson, M. G., Thom, A., Partridge, K., Garden, K., Campbell, G. P., Calder, G., and Palmer, R. M., Stimulation of myofibrillar protein degradation and expression of mRNA encoding the ubiquitin-proteasome system in C2C12 myotubes by dexamethasone: effect of the proteasome inhibitor MG-132. J. Cell. Physiol., 181, 455-461 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.