228
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Purification and Characterization of meta-Cleavage Compound Hydrolase from a Carbazole Degrader Pseudomonas resinovorans Strain CA10

, , , , , , , , , & show all
Pages 36-45 | Received 14 May 2002, Accepted 24 Sep 2002, Published online: 22 May 2014

  • 1) Tsuda, H., Hagiwara, A., Shibata, M., and Ito, N., Carcinogenic effect of carbazole in the liver of (C57BL/6NxC3H/HeN)F1 mice. J. Natl. Cancer Inst., 69, 1393-1398 (1982).
  • 2) Nestler, F. H. M., Characterization of wood-preserving coal-tar creosote by gas-liquid chromatography. Anal. Chem., 46, 46-53 (1974).
  • 3) Bressler, D. C., and Fedorak, P. M., Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can. J. Microbiol., 46, 397-409 (2000).
  • 4) Nojiri, H., Habe, H., and Omori, T., Bacterial degradation of aromatic compounds via angular dioxygenation. J. Gen. Appl. Microbiol., 47, 279-305 (2001).
  • 6) Ouchiyama, N., Zhang, Y., Omori, T., and Kodama, T., Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. Biosci. Biotechnol. Biochem., 57, 455-460 (1993).
  • 7) Sato, S., Nam, J.-W., Kasuga, K., Nojiri, H., Yamane, H., and Omori, T., Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J. Bacteriol., 179, 4850-4858 (1997).
  • 8) Sato, S., Ouchiyama, N., Kimura, T., Nojiri, H., Yamane, H., and Omori, T., Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J. Bacteriol., 179, 4841-4849 (1997).
  • 9) Nojiri, H., Sekiguchi, H., Maeda, K., Urata, M., Nakai, S., Yoshida, T., Habe, H., and Omori, T., Genetic characterization and evolutionary implications of a car gene cluster in the carbazole-degrader, Pseudomonas sp. strain CA10. J. Bacteriol., 183, 3663-3679 (2001).
  • 10) Rosche, B., Tshisuaka, B., Fetzner, S., and Lingens, F., 2-Oxo-1,2-dihydroquinoline 8-monooxygenase, a two-component enzyme system from Pseudonomas putida 86. J. Biol. Chem., 270, 17836-17842 (1995).
  • 12) Wittich, R.-M., Degradation of dioxin-like compounds by microorganisms. Appl. Microbiol. Biotechnol., 49, 489-499 (1998).
  • 13) Nojiri, H., Nam, J.-W., Kosaka, M., Morii, K., Takemura, T., Furihata, K., Yamane, H., and Omori, T., Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J. Bacteriol., 181, 3105-3113 (1999).
  • 14) Habe, H., Chung, J.-S., Lee, J.-H., Kasuga, K., Yoshida, T., Nojiri, H., and Omori, T., Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenase with different features. Appl. Environ. Microbiol., 67, 3610-3617 (2001).
  • 15) Furukawa, K., Tomozuka, N., and Kamibayashi, A., Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol., 38, 301-310 (1979).
  • 16) Furukawa, K., Hirose, J., Suyama, A., Zaiki, T., and Hayashida, S., Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J. Bacteriol., 175, 5224-5232 (1993).
  • 17) Habe, H., Kasuga, K., Nojiri, H., Yamane, H., and Omori, T., Analysis of cumene (isopropylbenzene) degradation genes from Pseudomonas fluorescens IP01. Appl. Environ. Microbiol., 62, 4471-4477 (1996).
  • 18) Seah, S. Y. K., Terracina, G., Bolin, J. T., Riebel, P., Snieckus, V., and Eltis, L. D., Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls. J. Biol. Chem., 237, 22943-22949 (1998).
  • 19) Seah, S. Y. K., Labbe, G., Nerdinger, S., Johnson, M. R., Snieckus, V., and Eltis, L. D., Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls. J. Biol. Chem., 275, 15701-15708 (2000).
  • 20) Cho, M. C., Kang, D. O., Yoon, B. D., and Lee, K., Toluene degradation pathway from Pseudomonas putida F1: substrate specificity and gene induction by 1-substituted benzenes. J. Ind. Microbiol. Biotechnol., 25, 163-170 (2000).
  • 21) Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., Sussman, J. L., Verschueren, K. H. G., and Goldman, A., The α/β hydrolase fold. Protein Eng., 5, 197-211 (1992).
  • 22) Hernáez, M. J., Andújar, E., Ríos, J. L., Kaschabek, S. R., Reinke, W., and Santero, E., Identification of a serine hydrolase which cleaves the alicyclic ring of tetralin. J. Bacteriol., 182, 5448-5453 (2000).
  • 23) Kilbane II, J. J., Daram, A., Abbasian, J., and Kayser, K. J., Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem. Biophys. Res. Commun., 297, 242-248 (2002).
  • 24) Bünz, P. V., Falchetto, R., and Cook, A. M., Purification of two isofunctional hydrolases (EC 3.7.1.8) in the degradative pathway for dibenzofuran in Sphingomonas sp. strain RW1. Biodegradation, 4, 171-178 (1993).
  • 25) Armengaud, J., Happe, B., and Timmis, K. N., Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. J. Bacteriol., 180, 3954-3966 (1998).
  • 26) Yanisch-Perron, C., Vieira, J., and Messing, J., Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103-119 (1985).
  • 27) Aoki, H., Kimura, H., Habe, H., Yamane, H., Kodama, T., and Omori, T., Cloning, nucleotide sequence and characterization of the genes encoding the enzymes involved in the degradation of cumene to 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid in Pseudomonas fluorescens IP01. J. Ferment. Bioeng., 81, 187-196 (1996).
  • 28) Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).
  • 29) Birnboim, H. C., and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res., 7, 1513-1523 (1979).
  • 30) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680-685 (1970).
  • 31) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254 (1976).
  • 32) Furukawa, K., and Arimura, N., Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes and Pseudomonas aeruginosa carrying the cloned bphC gene. J. Bacteriol., 169, 924-927 (1987).
  • 33) Astrias, J., and Timmis, K. N., Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the Gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J. Bacteriol., 175, 4631-4640 (1993).
  • 34) Sala-Trepat, J. M., and Evans, W. C., The meta cleavage of catechol by Azotobacter species: 4-oxalocrotonate pathway. Eur. J. Biochem., 20, 400-413 (1971).
  • 35) Hatta, T., Shimada, T., Yoshihara, T., Yamada, A., Masai, E., Fukuda, M., and Kiyohara, H., Meta-fission product hydrolases from a strong PCB degrader Rhodococcus sp. RHA1. J. Ferment. Bioeng., 85, 174-179 (1998).
  • 36) Iwata, K., Nojiri, H., Shimizu, K., Yoshida, T., Habe, H., and Omori, T., Expression, purification, and characterization of 2′-aminobiphenyl-2,3-diol 1,2-dioxygenase from carbazole-degrader Pseudomonas resinovorans strain CA10. Biosci. Biotechnol. Biochem., in press.
  • 37) Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J., AM1: a new general purpose quantum mechanical model. J. Am. Chem. Soc., 107, 3902-3909 (1985).
  • 38) Klamt, A., and Schuumann, G., Cosmo: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Transactions, 2, 799-805 (1993).
  • 39) Baker, J., An algorithm for the location of transition states. J. Comp. Chem., 7, 385 (1986).
  • 40) Kohler, H.-P. E., Schmid, A., and van der Maarel, M., Metabolism of 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HBP1: production and consumption of 2,2′,3-trihydroxybiphenyl. J. Bacteriol., 175, 1621-1628 (1993).
  • 41) Fleming, S. M., Robertson, T. A., Langley, G. J., and Bugg, T. D. H., Catalytic mechanism of a C-C hydrolase enzyme: evidence for a gem-diol intermediate, not an acyl enzyme. Biochemistry, 39, 1522-1531 (2000).
  • 42) Koopmans, T., Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica, 1, 104-113 (1933).
  • 43) Fukui, K., Role of frontier orbitals in chemical-reaction. Science, 218, 747-754 (1982).
  • 44) Nandhagopal, N., Yamada, A., Hatta, T., Masai, E., Fukuda, M., Mitsui, Y., and Senda, T., Crystal structure of 2-hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid (HPDA) hydrolase (BphD enzyme) from the Rhodococcus sp. strain RHA1 of the PCB degradation pathway. J. Mol. Biol., 309, 1139-1151 (2001).
  • 45) Saku, T., Fushinobu, S., Jun, S.-Y., Ikeda, N., Nojiri, H., Yamane, H., Omori, T., and Wakagi, T., Purification, characterization, and steady-state kinetics of a meta-cleavage compound hydrolase from Pseudomonas fluorescens IP01. J. Biosci. Bioeng., 93, 568-574 (2002).
  • 46) Fushinobu, S., Saku, T., Hidaka, M., Jun, S.-Y., Nojiri, H., Yamane, H., Shoun, H., Omori, T., and Wakagi, T., Crystal structures of a meta-cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) complexed with cleavage products. Protein Sci., 11, 2184-2195 (2002).
  • 47) Omori, T., Sugimura, K., Ishigooka, H., and Minoda, Y., Purification and some properties of a 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) reducing enzyme from Pseudomonas cruciviae S93 B1 involved in the degradation of biphenyl. Agric. Biol. Chem., 50, 931-937 (1986).
  • 48) Bayly, R. C., and Berardino, D. D., Purification and properties of 2-hydroxy-6-oxo-2,4-heptadienoate hydrolase from two strains of Pseudomonas putida. J. Bacteriol., 134, 30-37 (1978).
  • 49) Duggleby, C. J., and Williams, P. A., Purification and some properties of the 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase (2-hydroxymuconic semialdehyde hydroalse) encoded by the TOL plasmid pWW0 from Pseudomonas putida mt-2. J. Gen. Microbiol., 132, 717-726 (1986).
  • 50) Lam, W. W. Y., and Bugg, T. D. H., Purification, characterization, and stereochemical analysis of a C-C hydrolase: 2-hydroxy-6-keto-nona-2,4-diene-1,9-dioic acid 5,6-hydrolase. Biochemistry, 36, 12242-12251 (1997).
  • 51) Kasuga, K., Nojiri, H., Yamane, H., Kodama, T., and Omori, T., Cloning and characterization of the genes involved in the degradation of dibenzofuran by Terrabacter sp. strain DBF63. J. Ferment. Bioeng., 84, 387-399 (1997).
  • 52) Happe, B., Eltis, L. D., Poth, H., Hedderich, R., and Timmis, K. N., Characterization of 2,2′,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran- and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J. Bacteriol., 175, 7313-7320 (1993).
  • 53) Strubel, V., Engesser, K. H., Fischer, P., and Knackmuss, H.-J., 3-(2-Hydroxyphenyl)catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361. J. Bacteriol., 173, 1932-1937 (1991).
  • 54) Gieg, L. M., Otter, A., and Fedorak, P. M., Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. Environ. Sci. Technol., 30, 575-585 (1996).
  • 5) Nojiri, H., and Omori, T., Molecular bases of aerobic bacterial degradation of dioxins: involvement of angular dioxygenation. Biosci. Biotechnol. Biochem., 66, 2001-2016 (2002).
  • 11) Nam, J.-W., Nojiri, H., Yoshida, T., Habe, H., Yamane, H., and Omori, T., New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci. Biotechnol. Biochem., 65, 254-263 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.