231
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Cloning of the Xylitol Dehydrogenase Gene from Gluconobacter oxydans and Improved Production of Xylitol from D-Arabitol

, , &
Pages 584-591 | Received 20 Sep 2002, Accepted 11 Nov 2002, Published online: 22 May 2014

  • 1) Nigam, P., and Singh, D., Processes for fermentative production of xylitol. Process Biochem., 30, 117-124 (1995).
  • 2) Emodi, A., Xylitol, its properties and food applications. Food Technol., 32, 20-32 (1978).
  • 3) Pepper, T., and Olinger, P. M., Xylitol in sugar-free confections. Food Technol., 10, 98-106 (1988).
  • 4) Amaechi, B. T., Higham, S. M., and Edgar, W. M., The influence of xylitol and fluoride on dental erosion in vitro. Arch. Oral Biol., 43, 157-161 (1998).
  • 5) Makinen, K. K., The rocky road of xylitol to its clinical application. J. Dent. Res., 79, 1352-1355 (2000).
  • 6) Winkelhausen, E., and Kuzmanova, S., Microbial conversion of D-xylose to xylitol. J. Ferment. Bioeng., 86, 1-14 (1998).
  • 7) Escalante, J., Caminal, G., Figueredo, M., and Mas, C., Production of arabitol from glucose by Hansenula polymorpha. J. Ferment. Bioeng., 70, 228-231 (1990).
  • 8) Ingram, J. M., and Wood, W. A., Enzymatic basis for D-arabitol production by Saccharomyces rouxii. J. Bacteriol., 89, 1186-1194 (1965).
  • 9) Morgan, J. W., and Witter, L. D., Effect of sugars on D-arabitol production and glucose metabolism in Saccharomyces rouxii. J. Bacteriol., 138, 823-831 (1979).
  • 10) Blakley, E. R., and Spencer, J. F. T., Studies on the formation of D-arabitol by osmophilic yeasts. Can. J. Biochem. Physiol., 40, 1737-1748 (1962).
  • 11) Park, Y., Koo, M., and Oliveira, I., Biochemical characteristics of osmophilic yeasts isolated from pollens and honey. Biosci. Biotechnol. Biochem., 60, 1872-1873 (1996).
  • 12) Fernanda, M., and da Costa, M. S., Factors favouring the accumulation of arabinitol in the yeast Debaryomyces hansenii. Can. J. Microbiol., 31, 467-476 (1985).
  • 16) Okumura, H., Uozumi, T., and Beppu, T., Construction of plasmid vector and genetic transformation system for Acetobacter aceti. Agric. Biol. Chem., 49, 1011-1017 (1985).
  • 17) Tonouchi, N., Tsuchida, T., Yoshinaga, F., Horinouchi, S., and Beppu, T., A host-vector system for a cellulose-producing Acetobacter strain. Biosci. Biotechnol. Biochem., 58, 1899-1901 (1994).
  • 18) Klasen, R., Bringer-Meyer, S., and Sahm, H., Biochemical characterization and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans. J. Bacteriol., 177, 2637-2643 (1995).
  • 19) Yang, V., and Jeffries, T. W., Purification and properties of xylitol dehydrogenase from the xylose-fermenting yeast Candida shehatae. Appl. Biochem. Biotechnol., 26, 197-206 (1990).
  • 20) Girio, F., Pelica, F., and Amaral-Collaco, M. T., Characterization of xylitol dehydrogenase from Debaryomyces hansenii. Appl. Biochem. Biotechnol., 56, 79-87 (1996).
  • 21) Adachi, O., Toyama, H., Theeragool, G., Lotong, N., and Matsushita, K., Crystallization and properties of NAD-dependent D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3257. Biosci. Biotechnol. Biochem., 63, 1589-1595 (1999).
  • 22) Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J., and Ghosh, D., Short-chain dehydrogenase/reductases (SDR). Biochem., 34, 6003-6013 (1995).
  • 23) Benach, J., Atrian, S., Gozalez-Duarte, R., and Landenstein, R., The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 Å resolution. J. Mol. Biol., 282, 383-399 (1998).
  • 24) Tanaka, N., Nonaka, N., Nakamura, K., and Hara, A., SDR: structure, mechanism of action, and substrate recognition. Current Organic Chemistry, 5, 89-111 (2001).
  • 25) Tanabe, T., Tanaka, N., Uchikawa, K., Kabashima, T., Ito, K., Nonaka, T., Mitsui, Y., Tsuru, M., and Yoshimoto, T., Roles of the Ser146, Tyr159, and Lys163 residues in the catalytic action of 7α-hydroxysteroid dehydrogenase from Escherichia coli. J. Biochem. (Tokyo), 126, 456 (1999).
  • 26) Adachi, O., Toyama, H., and Matsushita, K., Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans IFO 12528. Biosci. Biotechnol. Biochem., 63, 402-407 (1999).
  • 28) Matsushita, K., Toyama, H., and Adachi, O., Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microb. Physiol., 36, 247-301 (1994).
  • 29) Goodwin, P. M., and Anthony, C., The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv. Microb. Physiol., 40, 1-80 (1998).
  • 30) Gupta, A., Singh, V., Qazi, G. N., and Kumar, A., Gluconobacter oxydans: its biotechnological applications. J. Mol. Microbiol. Biotechnol., 3, 445-456 (2001).
  • 31) Ross, P., Mayer, R., and Benziman, M., Cellulose biosynthesis and function in bacteria. Microbial. Rev., 55, 35-58 (1991).
  • 13) Suzuki, S., Sugiyama, M., Mihara, Y., Hashi-guchi, K., and Yokozeki, K., Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans. Biosci. Biotechnol. Biochem., 66, 2614-2620 (2002).
  • 14) Adachi, O., Fujii, Y., Ghaly, M. F., Toyama, H., Shinagawa, E., and Matsushita, K., Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Biosci. Biotechnol. Biochem., 65, 2755-2762 (2001).
  • 15) Sugisawa, T., and Hoshino, T., Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255. Biosci. Biotechnol. Biochem., 66, 57-64 (2002).
  • 27) Adachi, O., Fujii, Y., Ano, Y., Moonmangmee, D., Toyama, H., Shinagawa, E., Theeragool, G., Lotong, N., and Mastushita, K., Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent is the oxidative fermentation. Biosci. Biotechnol. Biochem., 65, 115-125 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.