338
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Isoflavones Found in Korean Soybean Paste as 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Inhibitors

, , , &
Pages 1051-1058 | Received 27 Oct 2003, Accepted 10 Feb 2004, Published online: 22 May 2014

  • 1) Brown, M. S., and Goldstein, J. L., Multivalent feedback regulation of HMG-CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res., 21, 505–517 (1980).
  • 2) Rodwell, V. W., Nordstorm, J. L., and Mitschelen, J. J., Regulation of HMG-CoA reductase. Adv. Lipid Res., 14, 1–74 (1976).
  • 3) Endo, A., Kuroda, M., and Tanzawa, K., Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett., 72, 323–326 (1976).
  • 4) Endo, A., HMG-CoA Reductase inhibitors. Nat. Prod. Rep., 10, 541–550 (1993).
  • 5) Wong, W. W., Smith, E. O., Stuff, J. E., Hachey, D. L., Heird, W. C., and Pownell, H. J., Cholesterol-lowering effect of soy protein in normocholesterolemic and hypercholesterolemic men. Am. J. Clin. Nutr., 68, 1380S–1389S (1998).
  • 6) Nagata, C., Ecological study of the association between soy product intake and mortality from cancer and heart disease in Japan. Int. J. Epidemiol., 29, 832–836 (2000).
  • 7) Lichtenstein, A. H., Potential benefits of soy protein in managing patients with hypercholesterolemia. Nutr. Clin. Care, 58, 144–147 (2000).
  • 8) Choi, Y. S., Kim, J. H., and Yoon, D. H., Effects of soy extract and sex on serum and liver lipid levels of the rat. Food Sci. Biotechnol., 11, 10–13 (2002).
  • 9) Park, K. J., Kim, Y. M., Lee, B. M., and Lee, B. K., Fungal microflora on Korean home-made meju. Kor. J. Mycol., 5, 7–12 (1997).
  • 10) Lee, S. S., Meju fermentation for a raw material of Korean traditional soy products. Kor. J. Mycol., 23, 161–175 (1995).
  • 11) Coll, J. C., and Bowden, B. F., The application of vacuum liquid chromatography to the separation of terpene mixtures. J. Nat. Prod., 49, 934–936 (1986).
  • 12) Pieters, L. A. C., and Vlietinck, A. J., Vacuum liquid chromatography and quantitative 1H NMR spectroscopy of tumor-promoting diterpene esters. J. Nat. Prod., 52, 186–190 (1989).
  • 13) Frimpong, K., Darnay, B. G., and Rodwell, V. W., Syrian hamster 3-hydroy-3-methylglutaryl-coenzyme A reductase expressed in Escherichia coli: Production of homogeneous protein. Protein Expression Purif., 4, 337–344 (1993).
  • 14) Fukutake, M., Takahashi, M., Ishida, K., Kawamura, H., Sugimura, T., and Wakabayashi, K., Quantification of genistein and genistein in soybeans and soybean products. Food Chem. Toxicol., 34, 457–461 (1996).
  • 15) Jha, H. C., Zilliken, F., and Bretmaier, E., Carbon-13 chemical shift assignments of chromones and isoflavones. Can. J. Chem., 58, 1211–1218 (1980).
  • 16) Hosny, M., and Rosazza, J. P. N., Microbial hydroxylation and methylation of genistein by Streptomycetes. J. Nat. Prod., 62, 1609–1612 (1999).
  • 17) Brenton, P. M., Precigoux, G., Courseille, C., and Hospital, M., Génisteine. Acta Chrystallogr. Sec. B, 31, 921–923 (1975).
  • 18) Goto, J., Matsuda, Y., Asano, K., Kawamato, I., Yasuzawa, T., Shirahata, K., Sano, H., and Kase, H., K-254-I (genistein), a new inhibitor of Ca2+ and calmodulin-dependent cyclic nucleotide phosphodiesterase from Streptosporangium vulgare. Agric. Biol. Chem., 51, 3003–3009 (1987).
  • 19) Miyazawa, M., Sakano, K., Nakamura, S., and Kosaka, H., Antimutagenic activity of isoflavones from soybean seeds (Glycine max merrill). J. Agric. Food Chem., 47, 1346–1349 (1999).
  • 20) Coward, L., Barnes, N. C., Setchell, K. D. R., and Barnes, S., Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem., 41, 1961–1967 (1993).
  • 21) Park, H. J., Park, J. H., Moon, J. O., Lee, K. T., Jung, W. T., Oh, S. R., and Lee, H. K., Isoflavone glycosides from the flowers of Pueraria thunbergiana. Phytochemistry, 51, 147–151 (1999).
  • 22) Messina, M., Soyfoods and soybean phyto-oestrogens (isoflavones) as possible alternatives to hormone replacement therapy (HRT). Eur. J. Cancer, 36, S71–S72 (2000).
  • 23) Kapiotis, S., Hermann, M., Held, I., Seelos, C., Ehringer, H., and Gmeiner, B. M., Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler. Thromb. Vasc. Biol., 17, 2868–2874 (1997).
  • 24) Anderson, J. J. B., and Garner, S. C., The effects of phytoestrogens on bone. Nutr. Res., 17, 1617–1632 (1997).
  • 25) Herman, C., Adlercreutz, T., Goldin, B. R., Gorbach, S. L., Höckerstedt, K. A. V., Watanabe, S., Hämäläinen, E. K., Markkanen, M. H., Mäkelä, T. H., and Wähälä, K. T., Soybean phytoestrogen intake and cancer risk. J. Nutr., 125, 757S–770S (1995).
  • 26) Anthony, M. S., Clarkson, T. B., and Williams, J. K., Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am. J. Clin. Nutr., 68 (suppl), 1390S–1393S (1998).
  • 27) Gardner, C. D., Newell, K. A., Cherin, G., and Haskell, W. L., The effect of soy protein with or without isoflavones relative to milk protein on plasma lipids in hypercholesterolemic postmenopausal women. Am. J. Clin. Nutr., 73, 728–735 (2001).
  • 28) Sung, J. H., Lee, S. J., Park, K. H., and Moon, T. W., Isoflavones inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase in vitro. Biosci. Biotechnol. Biochem., 68, 428–432 (2004).
  • 29) Kudou, S., Fleury, Y., Welti, D., Magnolato, D., Uchida, T., Kitamura, K., and Okubo, K., Malonyl isoflavone glycosides in soybean seeds (Glycine max MRRILL). Agric. Biol. Chem., 55, 2227–2233 (1991).
  • 30) Wang, H. J., and Murphy, P. A., Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. J. Agric. Food Chem., 42, 1674–1677 (1994)
  • 31) Barnes, S., Kirk, M., and Coward, L., Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-Mass spectrometry. J. Agric. Food Chem., 42, 2466–2472 (1994).
  • 32) Wang, H. J., and Murphy, P. A., Mass balance study of isoflavones during soybean processing. J. Agric. Food Chem., 44, 2377–2383 (1996).
  • 33) Hoeck, J. A., Fehr, W. R., Murphy, P. A., and Welke, G. A., Influence of genotype and environment on isoflavone contents of soybean. Crop. Sci., 40, 48–51 (2000).
  • 34) Wang, C., Sherrard, M., Pagadala, S., Wixon, R., and Scott, R. A., Isoflavone content among maturity group 0 to II soybeans. J. Am. Oil Chem. Soc., 77, 483–487 (2000).
  • 35) Wang, H. J., and Murphy, P. A., Isoflavone content in commercial soybean foods. J. Agric. Food Chem., 42, 1666–1673 (1994).
  • 36) Nguyenle, T., Wang, E., and Cheung, A. P., An investigation on the extraction and concentration of isoflavones in soy-based products. J. Pharm. Biomed. Anal., 14, 221–232 (1995).
  • 37) Murakami, H., Asakawa, T., Terao, J., and Matsushita, S., Antioxidative stability of tempeh and liberation of isoflavones by fermentation. Agric. Biol. Chem., 48, 2971–2975 (1984).
  • 38) Klus, K., and Barz, W., Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe. Arch. Microbiol., 164, 428–434 (1995).
  • 39) Setchell, K. D. R., Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr., 68 (suppl), 1333S–1346S (1998).
  • 40) Chiou, R. Y. Y., and Cheng, S. L., Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. J. Agric. Food Chem., 49, 3656–3660 (2001).
  • 41) Matsuura, M., and Obata, A., ß-Glucosidases from soybeans hydrolyze daidzin and genistin. J. Food Sci., 58, 144–147 (1993).
  • 42) Riou, C., Salmon, J. M., Vallier, M. J., Günnata, Z., and Barre, P., Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol., 64, 3607–3614 (1998).
  • 43) Piskular, M. K., Yamakoshi, J., and Iwai, Y., Daidzein and genistein but not their glycosides are absorbed from the rat stomach. FEBS Lett., 447, 287–291 (1999).
  • 44) Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Saito, M., Kataoka, S., Kubota, Y., Kikuchi, M., and Tobe, K., Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr., 130, 1695–1699 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.