212
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Dietary Branched-chain Amino Acids Suppress the Expression of Pancreatic Amylase mRNA in Rats

&
Pages 1067-1072 | Received 05 Nov 2003, Accepted 16 Feb 2004, Published online: 22 May 2014

  • 1) Smith, R. J., and Wilmore, D. W., Glutamine nutrition and requirements. JPEN: J. Parenteral Enteral Nutr., 14, 94S–99S (1990).
  • 2) Xu, G., Kwon, G., Cruz, W. S., Marshall, C. A., and McDaniel, M. L., Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic β-cells. Diabetes, 50, 353–360 (2001).
  • 3) Xu, G., Kwon, G., Marchall, C. A., Lin, T., Lawrence, J. C., Jr., and McDaniel, M. L., Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic β-cells. A possible role in protein translation and mitogenic signaling. J. Biol. Chem., 273, 28178–28184 (1998).
  • 4) Xu, G., Marchall, C. A., Lin, T., Kwon, G., Munivenkatappa, R. B., Hill, J. R., Lawrence, J. C., Jr., and McDaniel, M. L., Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J. Biol. Chem., 273, 4485–4491 (1998).
  • 5) Anthony, J. C., Yoshizawa, F., Anthony, T. G., Vary, T. C., Jefferson, L. S., and Kimball, S. R., Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr., 130, 2413–2419 (2000).
  • 6) Anthony, J. C., Anthony, T. G., Kimball, S. R., and Jefferson, L. S., Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J. Nutr., 131, 856S–860S (2001).
  • 7) Tesseraud, S., Bigot, K., and Taouis, M., Amino acid availability regulates S6K1 and protein synthesis in avian insulin-insensitive QM7 myoblasts. FEBS Lett., 540, 176–180 (2003).
  • 8) Li, C., Najafi, H., Daikhin, Y., Nissim, I. B., Collins, H. W., Yudkoff, M., Matschinsky, F. M., and Stanley, C. A., Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J. Biol. Chem., 278, 2853–2858 (2003).
  • 9) Anello, M., Ucclardello, V., Piro, S., Patane, G., Frittitta, L., Calabrese, V., Giuffrida Stella, A. M., Vigneri, R., Purrello, F., and Rabuazzo, A. M., Chronic exposure to high leucine impairs glucose-induced insulin release by lowering the ATP-to-ADP ratio. Am. J. Physiol., 281, E1082–E1087 (2001).
  • 10) Korc, M., Owerbach, D., Quinto, C., and Rutter, W. J., Pancreatic islet-acinar cell interaction: amylase messenger RNA levels are determined by insulin. Science, 213, 351–353 (1981).
  • 11) Tsai, A., Cowan, M. R., Johnson, D. G., and Brannon, P. M., Regulation of pancreatic amylase and lipase gene expression by diet and insulin in diabetic rats. Am. J. Physiol., 267, G575–G583 (1994).
  • 12) Kim, S., Cuzzort, L. M., and Allen, E. D., Effects of age on diabetes- and insulin-induced changes in pancreatic levels of α-amylase and its mRNA. Mech. Ageing Dev., 58, 151–161 (1991).
  • 13) Lee, P. C., Jordan, M., Pierper, G. M., and Roza, A. M., Normalization of pancreatic exocrine enzymes by islet transplantation in diabetic rats. Biochem. Cell Biol., 73, 269–273 (1995).
  • 14) Trimble, E. R., Bruzzone, R., and Belin, D., Insulin resistance is accompanied by impairment of amylase-gene expression in the exocrine pancreas of the obese Zucker rat. Biochem. J., 237, 807–812 (1986).
  • 15) Johnson, T. M., Rosenberg, M. P., and Meisler, M. H., An insulin-responsive element in the pancreatic enhancer of the amylase gene. J. Biol. Chem., 268, 464–468 (1993).
  • 16) Schick, J., Verspohl, R., and Scheele, G., Two distinct adaptive responses in the synthesis of exocrine pancreatic enzymes to inverse changes in protein and carbohydrate in the diet. Am. J. Physiol., 247, G611–G616 (1984).
  • 17) Brannon, P. M., Adaptation of the exocrine pancreas to diet. Annu. Rev. Nutr., 10, 85–105 (1990).
  • 18) Hara, H., Akatsuka, N., and Aoyama, Y., Non-essential amino acids play an important role in adaptation of the rat exocrine pancreas to high nitrogen feeding. J. Nutr. Biochem., 12, 450–457 (2001).
  • 19) Snook, J. T., Dietary regulation of pancreatic enzymes in the rat with emphasis on carbohydrate. Am. J. Physiol., 221, 1383–1387 (1971).
  • 20) Duan, R. D., Wicker, C., and Erlanson-Albertsson, C., Effect of insulin administration on contents, secretion, and synthesis of pancreatic lipase and colipase in rats. Pancreas, 6, 595–602 (1991).
  • 21) Hara, H., Narakino, H., Kiriyama, S., and Kasai, T., Induction of pancreatic growth and proteases by feeding a high amino acid diet does not depend on cholecystokinin in rats. J. Nutr., 125, 1143–1149 (1995).
  • 22) Hara, H., Hashimoto, N., Akatsuka, N., and Kasai, T., Induction of pancreatic trypsin by dietary amino acids in rats: Four trypsinogen isozymes and cholecystokinin messenger RNA. J. Nutr. Biochem., 11, 52–59 (2000).
  • 23) Hashimoto, N., and Hara, H., Dietary amino acids promote pancreatic protease synthesis at the translation stage in rats. J. Nutr., 133, 3052–3057 (2003).
  • 24) Cohen, S. A., Bidlingmeyer, B. A., and Tarvin, T. L., PITC derivatives in amino acid analysis. Nature, 320, 769–770 (1986).
  • 25) Hara, H., Ohyama, S., and Hira, T., Endogenous cholecystokinin plays a role in down-regulation of pancreatic amylase independent of dietary carbohydrate in rats. Regul. Pept., 99, 103–110 (2001).
  • 26) Mossner, J., Sommer, C., Spiekermann, G., and Secknus, R., Pancreatic enzyme synthesis and secretion are independently regulated by insulin and glucocorticosteroids. Digestion, 46 Suppl 2, 208–216 (1990).
  • 27) Harada, A., Lowering of pancreatic amylase activity induced by cold exposure, fasting and adrenalectomy in rats. Comp. Biochem. Physiol. A, 98, 333–338 (1991).
  • 28) Takacs, T., Nagy, I., Pap, A., and Varro, V., The effect of long-term administration of lorglumide (CR 1409) on rat pancreatic growth and enzyme composition. Pancreas, 5, 606–610 (1990).
  • 29) Wicker, C., Puigserver, A., and Scheele, G., Dietary regulation of levels of active mRNA coding for amylase and serine protease zymogens in the rat pancreas. Eur. J. Biochem., 139, 381–387 (1984).
  • 30) Kroder, G., Bossenmaier, B., Kellerer, M., Capp, E., Stoyanov, B., Muhlhofer, A., Berti, L., Horikoshi, H., Ullrich, A., and Haring, H., Tumor necrosis factor-alpha-and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signaling. J. Clin. Invest., 97, 1471–1477 (1996).
  • 31) Pederson, T. M., Kramer, D. L., and Rondinone, C. M., Serine/threonine phosphorylation of IRS-1 triggers its degradation. Possible regulation by tyrosine phosphorylation. Diabetes, 50, 24–31 (2001).
  • 32) Ishibashi, K., Imamura, T., Sherma, P. M., Huang, J., Ugi, S., and Olefsky, J. M., Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes. J. Clin. Invest., 107, 1193–1202 (2001).
  • 33) Patti, M. E., Brambilla, E., Luzi, L., Landaker, E. J., and Kahn, C. R., Bidirectional modulation of insulin action by amino acids. J. Clin. Invest., 101, 1519–1529 (1998).
  • 34) Torres, N., Lopez, G., Santiago, S. D., Hutson, S. M., and Tavor, A. R., Dietary protein level regulates expression of the mitochondrial branched-chain aminotransferase in rats. J. Nutr., 128, 1368–1375 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.