4,402
Views
284
CrossRef citations to date
0
Altmetric
Original Articles

Plant Acetyl-CoA Carboxylase: Structure, Biosynthesis, Regulation, and Gene Manipulation for Plant Breeding

&
Pages 1175-1184 | Published online: 22 May 2014

  • 1) Konishi, T., and Sasaki, Y., Compartmentation of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance towards herbicides. Proc. Natl. Acad. Sci. USA, 91, 3598–3601 (1994).
  • 2) Konishi, T., Shinohara, K., Yamada, K., and Sasaki, Y., Acetyl-CoA carboxylase in higher plants; most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol., 37, 117–122 (1996).
  • 3) Sasaki, Y., Hakamada, K., Suama, Y., Nagano, Y., Furusawa, I., and Matsuno, R., Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J. Biol. Chem., 268, 25118–25123 (1993).
  • 4) Kannangara, C. G., and Stumpf, P. K., Fat metabolism in higher plants. LIV. A prokaryotic type acetyl CoA carboxylase in spinach chloroplasts. Arch. Biochem. Biophys., 152, 83–91 (1972).
  • 5) Tanabe, T., Wada, K., Okazaki, T., and Numa, S., Acetyl-coenzyme-A carboxylase from rat liver. Subunit structure and proteolytic modification. Eur. J. Biochem., 57, 15–24 (1975).
  • 6) Harwood, J. L., Fatty acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39, 101–138 (1988).
  • 7) Stumpf, P. K., Biosynthesis of saturated and unsaturated fatty acids. In “The Biochemistry of Plants” Vol. 4, eds. Stumpf, P. K., and Conn, E. E., Academic Press, New York, pp. 177–203 (1980).
  • 8) Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and Ozeki, H., Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 322, 572–574 (1986).
  • 9) Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Todoh, N., Simada, H., and Sugiura, M., The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J., 5, 2043–2049 (1986).
  • 10) Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.-R., Meng, B.-Y., Li, Y.-Q., Kanno, A., Nishizawa, H., Hirai, A., Shinozaki, K., and Sugiura, M., The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet., 217, 185–194 (1989).
  • 11) Ogihara, Y., Terachi, T., and Sasakuma, T., Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc. Natl. Acad. Sci. USA, 85, 8573–8577 (1988).
  • 12) Nonet, M. L., Marvel, C. C., and Tolan, D. R., The hisT-purF region of the Escherichia coli K-12 chromosome. Identification of additional genes of the hisT and purF operons. J. Biol. Chem., 262, 12209–12217 (1987).
  • 13) Li, S.-J., and Cronan, J. E., Jr., The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. J. Biol. Chem., 267, 16841–16847 (1992).
  • 14) Li, S.-J., and Cronan, J. E., Jr., Putative zinc-finger protein encoded by a conserved chloroplast gene is very likely a subunit of a biotin-dependent carboxylase. Plant Mol. Biol., 20, 759–761 (1992).
  • 15) Sasaki, Y., Konishi, T., and Nagano, Y., The compartmentation of acetyl-Coenzyme A carboxylase in plants. Plant Physiol., 108, 445–449 (1995).
  • 16) Lichtenthaler, H. K., Mode of action of herbicides affecting acetyl-CoA carboxylase and fatty acid biosynthesis. Z. Nturforsch., 45C, 521–528 (1990).
  • 17) Choi, J. K., Yu, F., Wurtele, E. S., and Nikolau, B. J., Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of the chloroplastic acetyl-coenzyme A carboxylase. Plant Physiol., 109, 619–625 (1995).
  • 18) Shorrosh, B. S., Roesler, K. R., Shintani, D., van de Loo, F. J., and Ohlrogge, J. B., Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-CoA carboxylase from tobacco. Plant Physiol., 108, 805–812 (1995).
  • 19) Shorrosh, B. S., Savage, L. J., Soll, J., and Ohlrogge, J. B., The pea chloroplast membrane-associated protein, IEP96, is a subunit of acetyl-CoA carboxylase. Plant J., 10, 261–268 (1996).
  • 20) Choi-Rhee, E., and Cronan, J. E., The biotin carboxylase-biotin carboxyl carrier protein complex of Escherichia coli acetyl-CoA carboxylase. J. Biol. Chem., 278, 30806–30812 (2003).
  • 21) Kozaki, A., Kamada, K., Nagano, Y., Iguchi, H., and Sasaki, Y., Recombinant carboxyltransferase responsive to redox of pea plastidic acetyl-CoA carboxylase. J. Biol. Chem., 275, 10702–10708 (2000).
  • 22) Cronan, J. E., and Waldrop, G. L., Multi-subunit acetyl-CoA carboxylases. Progress Lipid Res., 41, 407–435 (2002).
  • 23) Athappilly, F. K., and Hendrickson, W. A., Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure, 3, 1407–1419 (1995).
  • 24) Waldrop, G. L., Rayment, I., and Holden, H. M., Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry, 33, 10249–10256 (1994).
  • 25) Zhang, H., Yang, Z., Shen, Y., and Tong, L., Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science, 299, 2064–2067 (2003).
  • 26) Kozaki, A., Mayumi, K., and Sasaki, Y., Thiol-disulfide exchange between nuclear-encoded and chloroplast-encoded subunits of pea acetyl-CoA carboxylase. J. Biol. Chem., 276, 39919–39925 (2001).
  • 27) Mekhedov, S., de Ilarduya, O. M., and Ohlrogge, J., Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis. Plant Physiol., 122, 389–402 (2000).
  • 28) Thelen, J. J., and Ohlogge, J. B., The multisubunit acetyl-CoA carboxylase is strongly associated with the chloroplast envelope through non-ionic interactions to carboxyltransferase subunits. Arch. Biochem. Biophys., 400, 245–257 (2002).
  • 29) Lois, R., and Buchanan, B. B., Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. Planta, 194, 504–509 (1994).
  • 30) Landry, L. G., Chapple, C. C. S., and Last, R. L., Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol., 109, 1159–1166 (1995).
  • 31) Konishi, T., Kamoi, T., Matsuno, R., and Sasaki, Y., Induction of cytosolic acetyl-coenzyme A carboxylase in pea leaves by ultraviolet-B irradiation. Plant Cell Physiol., 37, 1197–1200 (1996).
  • 32) Baud, S., Guyon, V., Kronenberger, J., Wuilleme, S., Miquel, M., Caboche, M., Lepiniec, L., and Rochat, C., Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J., 33, 75–86 (2003).
  • 33) Schneiter, R., Hitomi, M., Ivessa, A. S., Fasch, E. V., Kohlwein, S. D., and Tartakoff, A. M., A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex. Mol. Cell. Biol., 16, 7161–7162 (1996).
  • 34) Al-Feel, W., DeMar, J. C., and Wakil, S. J., A Saccharomyces cerevisiae mutant strain defective in acetyl-CoA carboxylase arrests at the G2/M phase of the cell cycle. Proc. Natl. Acad. Sci. USA, 100, 3095–3100 (2003).
  • 35) Saitoh, S., Takahashi, K., Nabeshima, K., Yamashita, Y., Nakaseko, Y., Hirata, A., and Yanagida, M., Aberrant mitosis in fission yeast mutants defective in fatty acid synthetase and acetyl CoA carboxylase. J. Cell. Biol., 134, 949–961 (1996).
  • 36) Oh, C.-S., Toke, D. A., Mandala, S., and Martin, C. E., ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem., 272, 17376–17384 (1997).
  • 37) Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402 (1997).
  • 38) Eddy, S. R., Profile hidden Markov models. Bioinformatics, 14, 755–763 (1998).
  • 39) Yanai, Y., Kawasaki, T., Shimada, H., Wurtele, E. S., Nikolau, B. J., and Ichikawa, N., Genomic organization of 251 kDa acetyl-CoA carboxylase genes in Arabidopsis: Tandem gene duplication has made two differentially expressed isozymes. Plant Cell Physiol., 36, 779–787 (1995).
  • 40) Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G., Predicting the subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 300, 1005–1016 (2000).
  • 41) Schulte, W., Topfer, R., Stracke, R., Schell, J., and Martini, N., Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family: Indication for plastidic localization of at least one isoform. Proc. Natl. Acad. Sci. USA, 94, 3465–3470 (1997).
  • 42) Ruuska, S. A., Girke, T., Benning, C., and Ohlrogge, J. B., Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell, 14, 1191–1206 (2002).
  • 43) Bendich, A. J., Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays, 6, 275–282 (1987).
  • 44) Ke, J., Wen, T.-N., Nikolau, B. J., and Wurtele, E. S., Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl-Coenzyme A carboxylase. Plant Physiol., 122, 1057–1071 (2000).
  • 45) Benee, R., RNA editing: How a message is changed. Curr. Opin. Genet. Dev., 6, 221–231 (1996).
  • 46) Wedekind, J. E., Dance, G. S. C., Sowden, M. P., and Smith, H. C., Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet., 19, 207–216 (2003).
  • 47) Hoch, B., Maier, R. M., Appel, K., Igloi, G. L., and Kössel, H., Editing of a chloroplast mRNA by creation of an initiation codon. Nature, 353, 178–180 (1991).
  • 48) Kudla, J., Igloi, G. L., Metzlaff, M., Hagemann, R., and Kössel, H., RNA editing in tobacco chloroplasts leads to the formation of a translatable psbL mRNA by a C to U substitution within the initiation codon. EMBO J., 11, 1099–1103 (1992).
  • 49) Maier, R. M., Hoch, B., Zeltz, P., and Kössel, H., Internal editing of the maize chloroplast ndhA transcript restores codons for conserved amino acids. Plant Cell, 4, 609–616 (1992).
  • 50) Wakasugi, T., Hirose, T., Horihata, M., Tsudzuki, T., Kössel, H., and Sugiura, M., Creation of a novel protein-coding region at the RNA level in black pine chloroplasts: The pattern of RNA editing in the gymnosperm chloroplasts is different from that in angiosperms. Proc. Natl. Acad. Sci. USA, 93, 8766–8770 (1996).
  • 51) Freyer, R., Kiefer-Meyer, M.-C., and Kössel, H., Occurrence of plastid RNA editing in all major lineages of land plants. Proc. Natl. Acad. Sci. USA, 94, 6285–6290 (1997).
  • 52) Sugiura, M., Hirose, T., and Sugita, M., Evolution and mechanism of translation in chloroplasts. Annu. Rev. Genet., 32, 437–459 (1998).
  • 53) Sasaki, Y., Kozaki, A., Ohmori, A., Iguchi, H., and Nagano, Y., Chloroplast RNA editing required for functional acetyl-CoA carboxylase in plants. J. Biol. Chem., 276, 3937–3940 (2001).
  • 54) Anant, S., and Davidson, N. O., Identification and regulation of protein components of the apolipoprotein B mRNA editing enzyme. Trends Cardiovasc Med., 12, 311–317 (2002).
  • 55) Sasaki, Y., Tomoda, Y., Tomi, H., Kamikubo, T., and Shinozaki, K., Synthesis of ribulose bisphosphate carboxylase in greening pea leaves. Coordination of mRNA level of two subunits. Eur. J. Biochem., 152, 179–186 (1985).
  • 56) Madoka, Y., Tomizawa, K., Mizoi, J., Nishida, I., Nagano, Y., and Sasaki, Y., Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol., 43, 1518–1525 (2002).
  • 57) Svab, Z., and Maliga, P., High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA, 90, 913–917 (1993).
  • 58) Shintani, D., Roesler, K., Shorrosh, B. S., Savage, L., and Ohlrogge, J., Antisense expression and overexpression of biotin carboxylase in tobacco leaves. Plant Physiol., 114, 881–886 (1997).
  • 59) Thelen, J. J., and Ohlrogge, J. B., Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J., 32, 419–431 (2002).
  • 60) Sauer, A., and Heise, K.-P., Regulation of acetyl-coenzyme A carboxylase and acetyl-coenzyme A synthetase in spinach chloroplasts. Z. Naturforsch., 39 C, 268–275 (1984).
  • 61) Portis, A. R., Jr., and Heldt, H. W., Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta, 449, 434–446 (1976).
  • 62) Sasaki, Y., Kozaki, A., and Hatano, M., Link between light and fatty acid synthesis: Thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. USA, 94, 11096–11101 (1997).
  • 63) Buchanan, B. B., Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol., 31, 341–374 (1980).
  • 64) Kozaki, A., and Sasaki, Y., Light-dependent changes in redox status of the plastidic acetyl-CoA carboxylase and its regulatory component. Biochem. J., 339, 541–546 (1999).
  • 65) Savage, L. J., and Ohlrogge, J. B., Phosphorylation of pea chloroplast acetyl-CoA carboxylase. Plant J., 18, 521–527 (1999).
  • 66) Ohlrogge, J. B., and Jaworski, J. G., Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Mol. Biol., 48, 109–136 (1997).
  • 67) Shintani, D. K., and Ohlrogge, J. B., Feedback inhibition of fatty acid synthesis in tobacco suspension cells. Plant J., 7, 577–587 (1995).
  • 68) Voelker, T. A., Worrell, A. C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D. J., Radke, S. E., and Davies, H. M., Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science, 257, 72–74 (1992).
  • 69) Topfer, R., Martini, N., and Schell, J., Modification of plant lipid synthesis. Science, 268, 681–685 (1995).
  • 70) Somerville, C. R., and Bonetta, D., Plants as factories for technical materials. Plant Physiol., 125, 168–171 (2001).
  • 71) Thelen, J. J., and Ohlrogge, J. B., Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Engineering J., 4, 12–21 (2002).
  • 72) Roesler, K., Shintani, D., Savage, L., Boddupalli, S., and Ohlrogge, J., Targeting of the Arabidopsis homomeric acetyl-Coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol., 113, 75–81 (1997).
  • 73) Hajdukiewicz, P. T. J., Allison, L. A., and Maliga, P., The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J., 16, 4041–4048 (1997).
  • 74) Vera, A., and Sugiura, M., Chloroplast rRNA transcription from structurally different tandem promoters: An additional novel-type promoter. Curr. Genet., 27, 280–284 (1995).
  • 75) Hou, B.-K., Zhou, Y.-H., Wan, L.-H., Zhang, Z.-L., Shen, G.-F., Chen, Z.-H., and Hu, Z.-M., Chloroplast transformation in oilseed rape. Transgenic Res., 12, 111–114 (2003).
  • 76) Skarjinskaia, M., Svab, Z., and Maliga, P., Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res., 12, 115–122 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.