607
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Protein Traffic for Secretion and Related Machinery of Bacillus subtilis

, &
Pages 2007-2023 | Published online: 22 May 2014

  • 1) Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., et al., The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 390, 249–256 (1997).
  • 2) Simonen, M., and Palva, I., Protein secretion in Bacillus species. Microbiol. Rev., 57, 109–137 (1993).
  • 3) Hitotsuyanagi, K., Yamane, K., and Maruo, B., Stepwise introduction of regulatory genes stimulating production of α-amylase into Bacillus subtilis: construction of an α-amylase extrahyper producing strain. Agric. Biol. Chem., 43, 2343–2349 (1979).
  • 4) Perego, M., A peptide export–import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc. Natl. Acad. Sci. U.S.A., 94, 8612–8617 (1997).
  • 5) Perego, M., Glaser, P., and Hoch, J. A., Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol. Microbiol., 19, 1151–1157 (1996).
  • 6) Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G., Identification of prokaryotic and eukaryotic signal peptidases and prediction of their cleavage sites. Protein Eng., 10, 1–6 (1997).
  • 7) Bunai, K., Ariga, M., Inoue, T., Nozaki, M., Ogane, S., Kakeshita, H., Nemoto, T., Nakanishi, H., and Yamane, K., Profiling and comprehensive expression analysis of ABC transporter solute-binding proteins of Bacillus subtilis membrane based on a proteomic approach. Electrophoresis, 25, 141–155 (2004).
  • 8) Hirose, I., Sano, K., Shioda, I., Kumano, M., Nakamura, K., and Yamane, K., Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiol., 146, 65–75 (2000).
  • 9) Tjalsma, H., Bolhuis, A., Jongbloed, J. D. H., Bron, S., and van Dijl, J. M., Signal peptide-dependent protein transport in Bacillus subtilis: a Genome-based survey of the secretome. Microbiol. Mol. Biol. Rev., 64, 515–547 (2000).
  • 10) Tjalsma, H., Kontinen, V. P., Pragai, Z., Wu, H., Meima, R., Venema, G., Bron, S., Sarvas, M., and van Dijl, J. M., The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium Bacillus subtilis: signal peptidase II is required for the efficient secretion of α-amylase, a non-lipoprotein. J. Biol. Chem., 274, 1698–1707 (1999).
  • 11) Tjalsma, H., Noback, M. A., Bron, S., Venema, G., Yamane, K., and van Dijl, J. M., Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities: constitutive and temporally controlled expression of different sip genes. J. Biol. Chem., 272, 25983–25992 (1997).
  • 12) Tjalsma, H., Bolhuis, A., van Roosmalen, M. L., Wiegert, T., Schumann, W., Broekhuizen, C. P., Quex, W., Venema, G., Bron, S., and van Dijl, J. M., Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev., 12, 2318–2331 (1998).
  • 13) Antelmann, H., Tjalsma, H., Voigt, B., Ohlmeier, S., Bron, S., van Dijl, J. M., and Hecker, M., A proteomic view on genome-based signal peptide predictions. Genome Res., 11, 1484–1502 (2001).
  • 14) Stöver, A. G., and Driks, A., Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J. Bacteriol., 181, 5476–5481 (1999).
  • 15) Driessen, A. J. M., Fekkes, P., and van der Wolk, J. P., The Sec system. Curr. Opin. Microbiol., 1, 216–222 (1998).
  • 16) Duong, F., Eichler, J., Price, A., Leonard, M. R., and Wickner, W., Biogenesis of the gram-negative bacterial envelope. Cell, 91, 567–573 (1997).
  • 17) Miyakawa, Y., and Komano, T., Study of the cell cycle of Bacillus subtilis using temperature sensitive mutants. I. Isolation and genetic analysis of the mutants defective in septum formation. Mol. Gen. Genet., 181, 207–214 (1980).
  • 18) Sadaie, Y., Takamatsu, H., Nakamura, K., and Yamane, K., Sequencing reveals similarity of the wild-type div+ gene of Bacillus subtilis to the Escherichia coli secA gene. Gene, 98, 101–105 (1991).
  • 19) Takamatsu, H., Fuma, S., Nakamura, K., Sadaie, Y., Shinkai, A., Matsuyama, S., Mizushima, S., and Yamane, K., In vivo and in vitro characterization of the secA gene product of Bacillus subtilis. J. Bacteriol., 174, 4308–4316 (1992).
  • 20) Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J., Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science, 297, 2018–2026 (2002).
  • 21) Osborne, A. R., Clemons, W. M. Jr., and Rapoport, T. A., A large conformational change of the translocation ATPase SecA. Proc. Natl. Acad. Sci. U.S.A., 101, 10937–10942 (2004).
  • 22) van den Berg, B., Clemons Jr., W. M., Collinson, I., Modis, Y., Hartmann, E., Harrison, S. C., and Rapoport, T. A., X-ray structure of a protein-conducting channel. Nature, 427, 36–44 (2004).
  • 23) Jeong, S. M., Yoshikawa, H., and Takahashi, H., Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol. Microbiol., 10, 133–142 (1993).
  • 24) van Wely, K. H. M., Swaving, J., Broekhuizen, C. P., Rose, M., Quax, W. J., and Driessen, A. J. M., Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. J. Bacteriol., 181, 1786–1792 (1999).
  • 25) Nakamura, K., Nakamura, A., Takamatsu, H., Yoshikawa, H., and Yamane, K., Cloning and characterization of a Bacillus subtilis gene homologous to E. coli secY. J. Biochem., 107, 603–607 (1990).
  • 26) Bolhuis, A., Broekhuizen, C. P., Sorokin, A., van Roosmalen, M. L., Venema, G., Bron, S., Quax, W. J., and van Dijl, J. M., SecDF of Bacillus subtilis, a molecular siamese twin required for the efficient secretion of proteins. J. Biol. Chem., 273, 21217–21224 (1998).
  • 27) Scotti, P. A., Urbanus, M. L., Brunner, J., de Gier, J. W., von Heijne, G., van der Does, C., Driessen, A. J. M., Oudega, B., and Luirink, J., YidC, the Escherichia coli homologue of mitochondrial Oxa1, is a component of the Sec translocase. EMBO J., 19, 542–549 (2000).
  • 28) Samuelson, J. C., Chen, M., Jiang, F., Möller, I., Wiedmann, M., Kuhn, A., Phillips, G. J., and Dalbey, R. E., YidC mediates membrane protein insertion in bacteria. Nature, 406, 637–641 (2000).
  • 29) Murakami, T., Haga, K., Takeuchi, M., and Sato, T., Analysis of the Bacillus subtilis spoIIIJ gene and its paralogue gene, yqjG. J. Bacteriol., 184, 1998–2004 (2002).
  • 30) Tjalsma, H., Bron, S., and van Dijl, J. M., Complementary impact of paralogous Oxa1-like proteins of Bacillus subtilis on post-translocational stages in protein secretion. J. Biol. Chem., 278, 15622–15632 (2003).
  • 31) van Wely, K. H. M., Swaving, J., Klein, M., Freudl, R., and Driessen, A. T. M., The carboxy terminus of the Bacillus subtilis SecA is dispensable for protein secretion and viability. Microbiology, 146, 2573–2581 (2000).
  • 32) Walter, P., and Blobel, G., 7SL RNA small cytoplasmic RNA is an integral component of the signal recognition particle. Nature, 299, 691–698 (1982).
  • 33) Bassford, P., Beckwith, J., Ito, K., Kumamoto, C., Mizushima, S., Oliver, D., Randall, L., Silhavy, T., Tai, P. C., and Wickner, D., The primary pathway of protein export in E. coli. Cell, 65, 367–368 (1991).
  • 34) Römish, K., Webb, J., Herz, J., Prehn, S., Frank, R., Vingron, M., and Dobberstein, B., Homology of 54 K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature, 340, 478–482 (1989).
  • 35) Berstein, H. D., Poritz, M. A., Strub, K., Hoben, P. J., Brenner, S., and Walter, P., Model for signal sequence recognition from amino-acid sequence of 54 K subunit of signal recognition particle. Nature, 340, 482–486 (1989).
  • 36) Valent, Q. A., Scotti, P. A., High, S., de Gier, J.-W., von Heijne, G., Lentzen, G., Wintermeyer, W., Oudega, B., and Luirink, J., The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J., 17, 2504–2512 (1998).
  • 37) Bowers, C. W., Lau, F., and Silhavy, T. J., Secretion of LamB–LacZ by the signal recognition particle pathway of Escherichia coli. J. Bacteriol., 185, 5697–5705 (2003).
  • 38) Honda, K., Nakamura, K., Nishiguchi, M., and Yamane, K., Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J. Bacteriol., 175, 4885–4894 (1993).
  • 39) Oguro, A., Kakeshita, H., Honda, H., Takamatsu, H., Nakamura, K., and Yamane, K., srb: a Bacillus subtilis gene encoding a homologue of the α-subunit of the mammalian signal recognition particle receptor. DNA Res., 2, 95–100 (1995).
  • 40) Oguro, A., Kakeshita, H., Takamatsu, H., Nakamura, K., and Yamane, K., The effect of Srb, a homologue of the mammalian SRP receptor α-subunit, on Bacillus subtilis growth and protein translocation. Gene, 172, 17–24 (1996).
  • 41) Struck, J. C. R., Vogel, D. W., Ulbrich, N., and Erdmann, V. A., The Bacillus subtilis scRNA is related to the 4.5S RNA from Escherichia coli. Nucleic Acids Res., 16, 2719 (1988).
  • 42) Althoff, S., Selinger, D., and Wise, J., Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res., 22, 1933–1947 (1994).
  • 43) Poritz, M. A., Strub, K., and Walter, P., Human SRP RNA and E. coli 4.5S RNA contain a highly homologous structural domain. Cell, 55, 4–6 (1988).
  • 44) Nakamura, K., Imai, Y., Nakamura, A., and Yamane, K., Small cytoplasmic RNA of Bacillus subtilis: Functional relationship with human signal recognition particle 7S RNA and Escherichia coli 4.5S RNA. J. Bacteriol., 174, 2185–2192 (1992).
  • 45) Zopf, D., Bernstein, H. D., Johnson, A. E., and Walter, P., The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J., 9, 4511–4517 (1990).
  • 46) Lütcke, H., High, S., Römisch, K., Ashford, A. J., and Dobberstein, B., The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J., 11, 1543–1551 (1992).
  • 47) Kurita, K., Honda, K., Suzuma, S., Takamatsu, H., Nakamura, K., and Yamane, K., Identification of a region of Bacillus subtilis Ffh, a homologue of mammalian SRP54 protein, that is essential for binding to small cytoplasmic RNA. J. Biol. Chem., 271, 13140–13146 (1996).
  • 48) Keenan, R. J., Freymann, D. M., Walter, P., and Stround, R. M., Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell, 94, 181–191 (1998).
  • 49) Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., and Doudna, J. A., Crystral structure of the ribonucleoprotein core of the signal recognition particle. Science, 287, 1232–1239 (2000).
  • 50) Birse, D. E., Kapp, U., Strub, K., Cusack, S., and Aberg, A., The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. EMBO J., 16, 3757–3766 (1997).
  • 51) Tanaka, I., Appelt, K., Dijk, J., White, S. W., and Wilson, K. S., 3-Å resolution structure of a protein with histone-like properties in prokaryotes. Nature, 310, 376–381 (1984).
  • 52) Nakamura, K., Yahagi, S., Yamazaki, T., and Yamane, K., Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J. Biol. Chem., 274, 13569–13576 (1999).
  • 53) Yamazaki, T., Yahagi, S., Nakamura, K., and Yamane, K., Depletion of Bacillus subtilis histone-like protein, HBsu, causes defective protein translocation and induces upregulation of small cytoplasmic RNA. Biochem. Biophys. Res. Commun., 258, 211–214 (1999).
  • 54) Nishiguchi, K., Honda, K., Amikura, R., Nakamura, K., and Yamane, K., Structural requirements of Bacillus subtilis small cytoplasmic RNA for cell growth, sporulation, and extracellular enzyme production. J. Bacteriol., 176, 157–165 (1994).
  • 55) Bourgaize, D. B., and Fournier, M. J., Initiation of translation is impaired in E. coli cells deficient in 4.5S RNA. Nature, 325, 281–284 (1987).
  • 56) Brown, S., Mutations in the gene for EF-G reduce the requirement for 4.5S RNA in the growth of E. coli. Cell, 49, 825–833 (1987).
  • 57) Shibata, T., Fujii, Y., Nakamura, Y., Nakamura, K., and Yamane, K., Identification of protein synthesis elongation factor G as a 4.5S RNA-binding protein in Escherichia coli. J. Biol. Chem., 271, 13162–13168 (1996).
  • 58) Nakamura, K., Fujii, Y., Shibata, T., and Yamane, K., Depletion of Escherichia coli 4.5S RNA leads to an increase in the amount of protein elongation factor EF-G associated with ribosomes. Eur. J. Biochem., 259, 543–550 (1999).
  • 59) Jensen, C. G., Brown, S., and Pedersen, S., Effect of 4.5S RNA depletion on Escherichia coli protein synthesis and secretion. J. Bacteriol., 176, 2502–2506 (1994).
  • 60) Nakamura, K., Miyamoto, H., Suzuma, S., Sakamoto, T., Kawai, G., and Yamane, K., Minimal functional structure of Escherichia coli 4.5S RNA required for binding to elongation factor G. J. Biol. Chem., 276, 22844–22849 (2001).
  • 61) Takamatsu, H., Bunai, K., Horinaka, T., Oguro, A., Nakamura, K., Watabe, K., and Yamane, K., Identification of a region required for binding to presecretory protein in Bacillus subtilis Ffh, a homologue of the 54-kDa subunit of mammalian signal recognition particle. Eur. J. Biochem., 248, 575–582 (1997).
  • 62) Bunai, K., Yamada, K., Hayashi, K., Nakamura, K., and Yamane, K., Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J. Biochem., 125, 151–159 (1999).
  • 63) Zelazny, A., Seluanov, A., Cooper, A., and Bibi, E., The NG domain of the prokaryotic signal recognition particle receptor, FtsY, is fully functional when fused to an unrelated integral membrane polypeptide. Proc. Natl. Acad. Sci. U.S.A., 94, 6025–6029 (1997).
  • 64) Eitan, A., and Bibi, E., The core Escherichia coli signal recognition particle receptor contains only the N and G domains of FtsY. J. Bacteriol., 186, 2492–2494 (2004).
  • 65) Peluso, P., Shan, S., Nock, S., Herschlag, D., and Walter, P., Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry, 40, 15224–15233 (2001).
  • 66) Egea, P. F., Shan, S., Napetschnig, J., Savage, D. F., Walter, P., and Stround, R. M., Substrate twinning activates the signal recognition particle and its receptor. Nature, 427, 215–221 (2004).
  • 67) Rahfeld, J.-U., Schierhorn, A., Mann, K., and Fischer, G., A novel peptidyl-prolyl cis/trans isomerase from Escherichia coli. FEBS Lett., 343, 65–69 (1994).
  • 68) Hani, J., Stumpf, G., and Domdey, H., PTF1 encodes an essential protein in Saccharomyces cerevisiae, which shows strong homology with a new putative family of PPIases. FEBS Lett., 365, 198–202 (1995).
  • 69) Kontinen, V. P., and Sarvas, M., The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol. Microbiol., 8, 727–737 (1993).
  • 70) Weiner, J. H., Bilous, P. T., Shaw, G. M., Lubitz, S. P., Frost, L., Thomas, G. H., Cole, J. A., and Turner, R. J., A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell, 93, 93–101 (1998).
  • 71) Sargent, F., Bogsch, E. G., Stanley, N. R., Wexler, M., Robinson, C., Berks, B. C., and Palmer, T., Overlapping functions of component of a bacterial Sec-independent protein export pathway. EMBO J., 17, 3640–3650 (1998).
  • 72) Jongbloed, J. D. H., Martin, U., Antelmann, H., Hecker, M., Tjalsma, H., Venema, G., Bron, S., Sarvas, M., van Dijl, J. M., and Müller, J., TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J. Biol. Chem., 275, 41350–41357 (2000).
  • 73) Jongbloed, J. D. H., Antelman, H., Hecker, M., Nijland, R., Bron, S., Airaksinen, U., Pries, F., Quex, W. J., van Dijl, J. M., and Broun, P. G., Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J. Biol. Chem., 277, 44068–44078 (2002).
  • 74) Paik, S. H., Chakicherla, A., and Hansen, J. N., Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem., 273, 23134–23142 (1998).
  • 75) Quentin, Y., Fichant, G., and Denizot, F., Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J. Mol. Biol., 287, 467–484 (1999).
  • 76) Antelmann, H., Yamamoto, H., Sekiguchi, J., and Hecker, M., Stabilization of cell wall proteins in Bacillus subtilis: a proteomic approach. Proteomics, 2, 591–602 (2002).
  • 77) Mitaku, S., Ono, M., Hirokawa, T., Boon-Chieng, S., and Sonoyama, M., Proprotein of membrane proteins in proteomes of 15 single-cell organisms analyzed by the SOSUI prediction system. Biophys. Chem., 82, 165–171 (1999).
  • 78) Molloy, M. P., Herbert, B. R., Slade, M. B., Rabilloud, T., Nouwens, A. S., Williams, K. L., and Googley, A. A., Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem., 267, 2871–2881 (2000).
  • 79) Champion, M. M., Campell, C. S., Siegele, D. A., Russell, D. H., and Hu, J. C., Proteome analysis of Escherichia coli K-12 by two-dimensional native-state Chromatography and MALDI-TOF MS. Mol. Microbiol., 47, 383–396 (2003).
  • 80) Traxler, B., and Murphy, C., Insertion of polytopic membrane protein MalF is dependent on the bacterial secretion machinery. J. Biol. Chem., 271, 12394–12400 (1996).
  • 81) Houben, E. N. G., Scotti, P. A., Valent, Q. A., Brunner, J., de Gier, J.-W. L., Oudega, B., and Luirink, J., Nascent Lep inserts into Escherichia coli inner membrane in the vicinity of YidC, SecY and SecA. FEBS Lett., 476, 229–233 (2000).
  • 82) Urbanus, M. L., Fröderberg, L., Drew, D., Björk, P., de Gier, J.-W., Brunner, J., Oudega, B., and Luirink, J., Targeting, insertion and localization of Escherichia coli YidC. J. Biol. Chem., 277, 12718–12723 (2002).
  • 83) Qi, H.-Y., and Bernstein, H. D., SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle. J. Biol. Chem., 274, 8993–8997 (1999).
  • 84) Beck, K., Wu, L.-F., Brunner, J., and Müller, M., Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chain by SRP and trigger factor. EMBO J., 19, 134–143 (2000).
  • 85) Macfarlane, J., and Müller, M., The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal recognition particle. Eur. J. Biochem., 233, 766–771 (1995).
  • 86) Cristóbal, S., Scotti, P., Luirink, J., von Heijne, G., and de Gier, J.-W., The signal recognition particle-targeting pathway does not necessarily deliver proteins to the sec translocase in Escherichia coli. J. Biol. Chem., 274, 20068–20070 (1999).
  • 87) Oda, Y., Haung, K., Cross, F. R., Cowburn, D., and Chait, B. T., Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. U.S.A., 96, 6591–6596 (1999).
  • 88) Hofmeister, A. E. M., Londono-Vallego, A., Harry, E., Stragier, P., and Losick, R., Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell, 83, 219–226 (1995).
  • 89) Cutting, S., Driks, A., Schmedt, R., Kunkel, B., and Losik, R., Forespore-specific transcription of a gene in the signal transduction pathway that governs pro-σK processing in Bacillus subtilis. Genes Dev., 5, 456–466 (1991).
  • 90) Popham, D. L., Illades-Aguiar, B., and Setlow, P., The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J. Bacteriol., 177, 4721–4729 (1995).
  • 91) Moriyama, R., Fukuoka, H., Miyata, S., Kudoh, S., Hattori, A., Kozuka, S., Yasuda, Y., Tochikubo, K., and Makino, S., Expression of a germination specific amidase, SleB, of bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. J. Bacteriol., 181, 2373–2378 (1999).
  • 92) Poham, D. L., Meador-Parton, J., Costello, C. E., and Setlew, P., Spore peptidoglycan structure in cwlD dacB double mutant in Bacillus subtilis. J. Bacteriol., 181, 6205–6209 (1999).
  • 93) Kuwana, R., Kasahara, Y., Fujibayashi, M., Takamatsu, H., Ogasawara, N., and Watabe, K., Proteomic characterization of novel spore proteins of Bacillus subtilis. Microbiol., 148, 3971–3982 (2002).
  • 94) Kakeshita, H., Oguro, A., Amikura, R., Nakamura, K., and Yamane, K., Expression of the ftsY gene, encoding a homologue of the α subunit of Mammalian signal recognition particle receptor, is controlled by different promoters in vegetative and sporulating cells of Bacillus subtilis. Microbiol., 146, 2595–2603 (2000).
  • 95) Kakeshita, H., Takamatsu, H., Amikura, R., Nakamura, K., Watabe, K., and Yamane, K., Effect of depletion of FtsY on spore morphology and the protein composition of the spore coat layer in Bacillus subtilis. FEMS Microbiol. Lett., 195, 41–46 (2001).
  • 96) Asai, K., Kawamura, F., Sadaie, Y., and Takahashi, H., Isolation and characterization of a sporulation mutation in the Bacillus subtilis secA gene. J. Bacteriol., 179, 544–547 (1997).
  • 97) Takamatsu, H., Nakane, A., Sadaie, Y., Nakamura, K., and Yamane, K., The rapid degradation of mutant SecA protein in the Bacillus subtilis secA341(ts) mutant causes a protein translocation defect in the cell. Biosci. Biotechol. Biochem., 58, 1845–1850 (1994).
  • 98) Fahnestock, S. R., and Fisher, K. E., Expression of the streptococcal protein A gene in Bacillus subtilis by gene fusions utilizing the promoter from a Bacillus amyloliquefaciens α-amylase gene. J. Bacteriol., 165, 796–804 (1986).
  • 99) Sauders, C. W., Schmidt, B. T., Mollnee, R. L., and Guyer, M. S., Secretion of human serum albumin from Bacillus subtilis. J. Bacteriol., 169, 2917–2925 (1987).
  • 100) Yoshimura, K., Toibana, A., Kikuchi, K., Kobayashi, M., Hayakawa, T., Nakahama, K., Kikuchi, M., and Ikehara, M., Differences between Saccharomyces cerevisiae and Bacillus subtilis in secretion of human lysozyme. Biochem. Biophys. Res. Commun., 145, 712–718 (1987).
  • 101) Yamane, K., Shiroza, T., Furusato, T., Nakamura, K., Nakazawa, K., Yanagi, K., Yamasaki, M., and Tamura, G., Bacillus subtilis secretion vectors for proteins and oligopeptides constructed from B. subtilis α-amylase gene. In “Molecular Biology of Microbial Differentiation”, eds. Hoch, J. A., and Setlow, P., American Society for Microbiology, Washington, D.C., pp. 117–123 (1985).
  • 102) Honda, K., Fujieda, H., Ogawa, K., Imai, M., Yamamoto, H., Ikeda, T., and Yamane, K., Extracellular production of human hepatitis B virus preS2 antigen as hybrid proteins with Bacillus subtilis α-amylases in high-salt-concentration media. Appl. Microbiol. Biotechnol., 40, 341–347 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.