546
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

The Pro-peptide of Streptomyces mobaraensis Transglutaminase Functions in cis and in trans to Mediate Efficient Secretion of Active Enzyme from Methylotrophic Yeasts

, , , , &
Pages 2058-2069 | Received 06 May 2004, Accepted 02 Jul 2004, Published online: 22 May 2014

  • 1) Folk, J. E., Transglutaminases. Annu. Rev. Biochem., 49, 517–531 (1980).
  • 2) Wilson, S. A., Modifying meat proteins via enzymatic cross-linking. Proceedings of the 27th meat industry research conference, Hamilton, Meal Industry Research Institutes of New Zealand, Mirinz, pp. 247–277 (1992).
  • 3) Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchino, R., Tanaka, H., and Motoki, M., Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem., 53, 2613–2617 (1989).
  • 4) Ikura, K., Nasu, T., Yokota, H., Tsuchiya, Y., Sasaki, R., and Chiba, H., Amino acid sequence of guinea pig liver transglutaminase from its cDNA sequence. Biochemistry, 27, 2898–2905 (1988).
  • 5) Ichinose, A., Hendrickson, L. E., Fujikawa, K., and Davie, E. W., Amino acid sequence of the subunit of human Factor XIII. Biochemistry, 25, 6900–6906 (1986).
  • 6) Thacher, S. M., Purification of keratinocyte transglutaminase and its expression during squamous differentiation. J. Invest. Dermatol., 92, 578–584 (1989).
  • 7) Washizu, K., Ando, K., Koikeda, S., Hirose, S., Matsuura, A., Takagi, H., Motoki, M., and Takeuchi, K., Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci. Biotechnol. Biochem., 58, 82–87 (1994).
  • 8) Pasternack, R., Dorsch, S., Otterbach, J. T., Robenek, I. R., Wolf, S., and Fuchsbauer, H. L., Bacterial pro-transglutaminase from Streptoverticillium mobaraense: Purification, characterization and sequence of the zymogen. Eur. J. Biochem., 257, 570–576 (1998).
  • 9) Kikuchi, Y., Date, M., Yokoyama, K., Umezawa, Y., and Matsui, H., Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: Processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol., 69, 358–366 (2003).
  • 10) Zotzel, J., Pasternack, R., Pelzer, C., Ziegert, D., Mainusch, M., and Fuchsbauer, H. L., Activated transglutaminase from Streptomyces mobaraensis is processed by a tripeptidyl aminopeptidase in the final step. Eur. J. Biochem., 270, 4149–4155 (2003).
  • 11) Zotzel, J., Keller, P., and Fuchsbauer, H. L., Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease. Eur. J. Biochem., 270, 3214–3222 (2003).
  • 12) Takehana, S., Washizu, K., Ando, K., Koikeda, S., Takeuchi, K., Matsui, H., Motoki, M., and Takagi, H., Chemical synthesis of the gene for microbial transglutaminase from Streptoverticillium and its expression in Escherichia coli. Biosci. Biotechnol. Biochem., 58, 88–92 (1994).
  • 13) Yokoyama, K., Nio, N., and Kikuchi, Y., Properties and applications of microbial transglutaminase. Appl. Microbiol. Biotecnol., 64, 447–454 (2004).
  • 14) Hollenberg, C. P., and Gellissen, G., Production of recombinat proteins by methylotrophic yeasts. Curr. Opin. Biotechnol., 8, 554–560 (1997).
  • 15) Higgins, D. R., and Cregg, J. M., Introduction to Pichia pastoris. In “Pichia Protocols”, eds. Higgins, D. R., and Cregg, J. M., Humana Press Inc., Totowa, N.J., pp. 1–16 (1999).
  • 16) Sakai, Y., Akiyama, M., Kondoh, H., Shibano, Y., and Kato, N., High-level secretion of fungal glucoamylase using the Candida boidinii gene expression system. Biochim. Biophys. Acta, 1308, 81–87 (1996).
  • 17) Sakai, Y., Yoshida, H., Yurimoto, H., Yoshida, N., Fukuya, H., Takabe, K., and Kato, N., Production of fungal fructosyl amino acid oxidase useful for diabetic diagnosis in the peroxisome of Candida boidinii. FEBS Lett., 459, 233–237 (1999).
  • 18) Tani, Y., Sakai, Y., and Yamada, H., Isolation and characterization of a mutant of a methanol yeast, Candida boidinii S2, with higher formaldehyde productivity. Agric. Biol. Chem., 49, 2699–2706 (1985).
  • 19) Sakai, Y., Kazarimoto, T., and Tani, Y., Transformation system for an asporogenous methylotrophic yeast, Candida boidinii: cloning of the orotidine-5′-phosphate decarboxylase gene (URA3), isolation of uracil auxotrophic mutants, and use of the mutants for integrative transformation. J. Bacteriol., 173, 7458–7463 (1991).
  • 20) Sakai, Y., and Tani, Y., Directed mutagenesis in an asporogenous methylotrophic yeast: cloning, sequencing, and one-step gene disruption of the 3-isopropylmalate dehydrogenase gene (LEU2) of Candida boidinii to derive doubly auxotrophic marker strains. J. Bacteriol., 174, 5988–5993 (1992).
  • 21) Cregg, J. M., and Russell, K., Transformation. In “Pichia Protocols”, eds. Higgins, D. R., and Cregg, J. M., Humana Press Inc., Totowa, N.J., pp. 27–40 (1999).
  • 22) Sakai, Y., Goh, T. K., and Tani, Y., High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae. J. Bacteriol., 175, 3556–3562 (1993).
  • 23) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 24) Folk, J. E., and Cole, P. W., Mechanism of action of guinea pig liver transglutaminase I; purification and properties of the enzyme: identification of a functional cysteine essential for activity. J. Biol. Chem., 241, 5518–5525 (1966).
  • 25) Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 26) Kashiwagi, T., Yokoyama, K., Ishikawa, K., Ono, K., Ejima, D., Matsui, H., and Suzuki, E., Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem., 277, 44252–44260 (2002).
  • 27) Beggah, S., Lechenne, B., Reichard, U., Foundling, S., and Monod, M., Intra- and intermolecular events direct the propeptide-mediated maturation of the Candida albicans secreted aspartic proteinase Sap1p. Microbiology, 146, 2765–2773 (2000).
  • 28) Cao, J., Hymowitz, M., Conner, C., Bahou, W. F., and Zucker, S., The propeptide domain of membrane type 1-matrix metalloproteinase acts as an intramolecular chaperone when expressed in trans with the mature sequence in COS-1 cells. J. Biol. Chem., 275, 29648–29653 (2000).
  • 29) McIver, K. S., Kessler, E., Olson, J. C., and Ohman, D. E., The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. Mol. Microbiol., 18, 877–889 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.