125
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Identification of Nucleotide Binding Sites in V-Type Na+-ATPase from Enterococcus hirae

, , &
Pages 293-299 | Received 30 Jun 2003, Accepted 14 Oct 2003, Published online: 22 May 2014

  • 1) Senior, A. E., The proton-translocating ATPase of Escherichia coli. Ann. Rev. Biopys. Chem., 19, 7–41 (1990).
  • 2) Nelson, N., and Taiz, L., The evolution of H+-ATPases. Trends Biochem. Sci., 14, 113–116 (1989).
  • 3) Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., Bowman, B. J., Manolson, M. F., Poole, R. J., Data, T., Oshima, T., Konishi, J., Denda, K., and Yoshida, M., Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA, 86, 6661–6665 (1989).
  • 4) Futai, M., Noumi, T., and Maeda, M., ATP synthase (H+-ATPase): Results by combined biochemical and molecular biological approaches. Ann. Rev. Biochem., 58, 111–136 (1989).
  • 5) Stevens, T. H., and Forgac, M., Structure, function and regulation of the vacuolar (H+)-ATPase. Annu. Rev. Cell Dev. Biol., 13, 779–808 (1997).
  • 6) Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E., Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature, 370, 621–628 (1994).
  • 7) Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. Jr., Direct observation of the rotation of F1-ATPase. Nature, 386, 299–302 (1997).
  • 8) Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K., Evidence for rotation of V1-ATPase. Proc. Natl. Acad. Sci. USA, 100, 2312–2315 (2003).
  • 9) Dimroth, P., Wang, H., Grabe, M., and Oster, G., Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc. Natl. Acad. Sci. USA, 96, 4924–4929 (1999).
  • 10) Murata, T., Yoshikawa, Y., Toshiaki, H., Takase, K., Kakinuma, Y., Yamato, I., and Kikuchi, T., Nucleotide binding sites in V-type Na+-ATPase from Enterococcus hirae. J. Biochem., 132, 789–794 (2002).
  • 11) Takase, K., Yamato, I., and Kakinuma, Y., Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na+-ATPase from Enterococcus hirae. J. Biol. Chem., 268, 11610–11616 (1993).
  • 12) Shao, E., Nishi, T., Kawasaki-Nishi, S., and Forgac, M., Mutational analysis of the non-homologous region of subunit A of the yeast V-ATPase. J. Biol. Chem., 278, 12985–12991 (2003).
  • 13) Vasilyeva, E., Liu, Q., Macleod, K. J., Baleja, J. D., and Forgac, M., Cysteine-scanning mutagenesis of the noncatalytic nucleotide binding site of the Yeast V-ATPase. J. Biol. Chem., 275, 255–260 (2000).
  • 14) Takase, K., Kakinuma, S., Yamato, I., Konishi, K., Igarashi, K., and Kakinuma, Y., Sequencing and characterization of the ntp gene cluster for vacuolar-type Na+-translocating ATPase of Enterococcus hirae. J. Biol. Chem., 269, 11037–11044 (1994).
  • 15) Murata, T., Takase, K., Yamato, I., Igarashi, K., and Kakinuma, Y., Purification and reconstitution of Na+-translocating vacuolar ATPase from Enterococcus hirae. J. Biol. Chem., 272, 24885–24890 (1997).
  • 16) Murata, T., Takase, K., Yamato, I., Igarashi, K., and Kakinuma, Y., Properties of the V0V1 Na+-ATPase from Enterococcus hirae and its V0 moiety. J. Biochem. (Tokyo), 272, 24885–24890 (1999).
  • 17) Kakinuma, Y., and Igarashi, K., Purification and characterization of the catalytic moiety of vacuolar-type Na+-ATPase from Enterococcus hirae. J. Biochem., 116, 1302–1308 (1994).
  • 18) Murata, T., Igarashi, K., Kakinuma, Y., and Yamato, I., Na+ binding of V-type Na+-ATPase in Enterococcus hirae. J. Biol. Chem., 275, 13415–13419 (2000).
  • 19) Murata, T., Kakinuma, Y., and Yamato, I., ATP-dependent affinity change of Na+ binding sites of V-ATPase in Enterococcus hirae. J. Biol. Chem., 276, 48337–48340 (2001).
  • 20) Futai, M., Iwamoto, A., Omote, H., and Maeda, M., A glycine-rich sequence in the catalytic site of F-type ATPase. J. Bioenerg. Biomembr., 24, 463–467 (1992).
  • 21) Pedersen, P. L., and Amzel, L. M., ATP synthases. Structure, reaction center, mechanism, and regulation of one of nature’s most unique machines. J. Biol. Chem., 268, 9937–9940 (1993).
  • 22) Penefsky, H. S., and Cross, R. L., Structure and mechanism of FoF1-type ATP synthases and ATPases. Adv. Enzymol., 64, 173–214 (1991).
  • 23) Yokoyama, K., Muneyuki, E., Amano, T., Mizutani, S., Yoshida, M., Ishida, M., and Ohkuma, S., V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. J. Biol. Chem., 273, 20504–20510 (1998).
  • 24) Vasilyeva, E., and Forgac, M., 3′-O-(4-Benzoyl)benzoyladenosine 5′-triphosphate inhibits activity of the vacuolar H+ATPase from bovine brain clathrin-coated vesicles by modification of a rapidly exchangeable, noncatalytic nucleotide binding site on the B subunit. J. Biol. Chem., 271, 12775–12782 (1996).
  • 25) Zhang, J., Vasilyeva, E., Feng, Y., and Forgac, M., Inhibition and labeling of the coated vesicle V-ATPase by 2-azido-[32P]ATP. J. Biol. Chem., 270, 15494–15500 (1995).
  • 26) Peng, S.-B., Nucleotide labeling and reconstitution of the recombinant 58-kDa subunit of the vacuolar proton-translocating ATPase. J. Biol. Chem., 270, 16926–16931 (1995).
  • 27) Berggren, K., Chernokalskaya, E., Steinberg, T. H., Kemper, C., Lopez, M. F., Diwu, Z., Haugland, R. P., and Patton, W. F., Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis, 21, 2509–2521 (2000).
  • 28) Takase, K., Yamato, I., Igarashi, K., and Kakinuma, Y., Indispensable glutamic acid residue-139 of NtpK proteolipid in the reaction of vacuolar Na+-translocating ATPase in Enterococcus hirae. Biosci. Biotechnol. Biochem., 63, 1125–1129 (1999).
  • 29) Schagger, H., and von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem., 166, 368–379 (1987).
  • 30) Cross, R. L., Cunningham, D., Miller, C. G., Xue, Z. X., Zhou, J. M., and Boyer, P. D., Adenine nucleotide binding sites on beef heart F1 ATPase: photoaffinity labeling of beta-subunit Tyr-368 at a noncatalytic site and beta Tyr-345 at a catalytic site. Proc. Natl. Acad. Sci. USA, 84, 5715–5719 (1987).
  • 31) Wise, J. G., Hicke, B. J., and Boyer, P. D., Catalytic and noncatalytic nucleotide binding sites of the Escherichia coli F1 ATPase. Amino acid sequences of beta-subunit tryptic peptides labeled with 2-azido-ATP. FEBS Lett., 223, 395–401 (1987).
  • 32) Weber, J., Wilke-Mounts, S., Lee, R. S., Grell, E., and Senior, A. E., Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. J. Biol. Chem., 268, 6241–6247 (1993).
  • 33) MacLeod, K. J., Vasilyeva, E., Merdek, K., Vogel, P. D., and Forgac, M., Photoaffinity labeling of wild-type and mutant forms of the yeast V-ATPase A subunit by 2-azido-[32P]ADP. J. Biol. Chem., 274, 32869–32874 (1999).
  • 34) Bullough, D. A., and Allison, W. S., Inactivation of the bovine heart mitochondrial F1-ATPase by 5′-p-fluorosulfonylbenzoyl[3H]inosine is accompanied by modification of tyrosine 345 in a single beta subunit. J. Biol. Chem., 261, 14171–14177 (1986).
  • 35) Liu, Q., Kane, P. M., Newman, P. R., and Forgac, M., Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). J. Biol. Chem., 271, 2018–2022 (1996).
  • 36) Weber, J., Lee, R. S., Wilke-Mounts, S., Grell, E., and Senior, A. E., Combined application of site-directed mutagenesis, 2-azido-ATP labeling, and lin-benzo-ATP binding to study the noncatalytic sites of Escherichia coli F1-ATPase. J. Biol. Chem., 268, 6241–6247 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.