199
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Cloning, Functional Expression, and Mutagenesis of cDNA Encoding Class I Chitinase from Rye (Secale cereale) Seeds

, , , &
Pages 324-332 | Received 04 Aug 2003, Accepted 07 Oct 2003, Published online: 22 May 2014

  • 1) Schlumbaum, A., Mauch, F., Vogeli, U., and Boller, T., Plant chitinases are potent inhibitors of fungal growth. Nature, 324, 365–367 (1986).
  • 2) Broekaert, W. F., Van Pariji, J., Allen, A. K., and Peumans, W. J., Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol. Mol. Plant Pathol., 33, 319–331 (1988).
  • 3) Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., and Broglie, R., Transgenic plants with enhanced resistance to the fungal pathogen Rizoctonia solani. Science, 254, 1194–1197 (1991).
  • 4) Sela-Buurlage, M. B., Ponstein, A. S., Bres-Vloemans, S. A., Melchers, L. S., van den Elzen, P. J. M., and Cornelissen, B. J. C., Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol., 101, 857–863 (1993).
  • 5) Henrissat, B., and Bairoch, A., New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 293, 781–788 (1993).
  • 6) Yamagami, T., and Funatsu, G., Limited proteolysis and reduction-carboxymethylation of rye seed chitinase-a: role of the chitin-binding domain in its chitinase action. Biosci. Biotechnol. Biochem., 60, 1081–1086 (1996).
  • 7) Iseli, B., Boller, T., and Neuhaus, J. M., The N-terminal cysteine-rich domain of tabacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol., 103, 221–226 (1993).
  • 8) Yamagami, T., and Funatsu, G., Purification and some properties of three chitinases from the seeds of rye (Secale cereale). Biosci. Biotechnol. Biochem., 57, 643–647 (1993).
  • 9) Yamagami, T., and Funatsu, G., The complete amino acid sequence of chitinase-c from the seeds of rye (Secale cereale). Biosci. Biotechnol. Biochem., 57, 1854–1861 (1993).
  • 10) Yamagami, T., and Funatsu, G., The complete amino acid sequence of chitinase-a from the seeds of rye (Secale cereale). Biosci. Biotechnol. Biochem., 58, 322–329 (1994).
  • 11) Taira, T., Yamagami, T., Aso, Y., Ishiguro, M., and Ishihara, M., Localization, accumulation, and antifungal activity of chitinases in rye (Secale cereale) seed. Biosci. Biotechnol. Biochem., 65, 2710–2718 (2001).
  • 12) Taira, T., Ohnuma, T., Yamagami, T., Aso, Y., Ishiguro, M., and Ishihara, M., Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Biosci. Biotechnol. Biochem., 66, 970–977 (2002).
  • 13) Ohnuma, T., Yagi, M., Yamagami, T., Taira, T., Aso, Y., and Ishiguro, M., Molecular cloning, functional expression, and mutagenesis of cDNA encoding rye (Secale cereale) seed chitinase-c. Biosci. Biotechnol. Biochem., 66, 277–284 (2002).
  • 14) Chen, Z., Simple modifications to increase specificity of the 5′ RACE procedure. Trends in Genetics, 12, 87–88 (1996).
  • 15) Sanger, F., Nickelsen, S., and Coulson, A. R., DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467 (1977).
  • 16) Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W., Use of T7 RNA polymerase to direct expression of cloned gene. Methods Enzymol., 185, 60–89 (1990).
  • 17) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 18) Towbin, H., Staehelin, T., and Gordon, L., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some application. Proc. Natl. Acad. Sci. USA, 76, 4350–4354 (1979).
  • 19) Imoto, T., and Yagishita, K., A simple activity measurement of lysozyme. Agric. Biol. Chem., 35, 1154–1156 (1971).
  • 20) Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C., Measurement of protein using bicinchoninic acid. Anal. Biochem., 150, 76–85 (1985).
  • 21) Von Heijine, G., Patterns of amino acids near signal sequence clevage sites. Eur. J. Biochem., 133, 17–21 (1983).
  • 22) Yeh, S., Moffatt, B. A., Griffith, M., Xiong, F., Yang, D. S., Wiseman, S. B., Sarhan, F., Danyluk, J., Xue, Y. Q., Hew, C. L., Doherty-Kirby, A., and Lajoie, G., Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol., 124, 1251–1264 (2000).
  • 23) Shinshi, H., Neuhaus, J. M., Ryals, J., and Meins, F. Jr., Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol. Biol., 14, 357–368 (1990).
  • 24) Yamagami, T., and Funatsu, G., Involvements Trp23 in the chitin-binding and of Trp131 in the chitinase activity of rye seed chitinase-a. Biosci. Biotechnol. Biochem., 61, 1819–1825 (1997).
  • 25) Leah, R., Tommerup, H., Svendsen, I., and Mundy, J., Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem., 266, 1564–1573 (1990).
  • 26) Iseli, B., Boller, T., and Neuhaus, J. M., The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol., 103, 221–226 (1993).
  • 27) Yamagami, T., and Funatsu, G., Limited proteolysis and reduction-carboxymethylation of rye seed chitinase-a: role of the chitin-binding domain in its chitinase action. Biosci. Biotechnol. Biochem., 60, 1081–1086 (1996).
  • 28) Neuhaus, J. M., Sticher, L., Meins, F. Jr., and Boller, T., A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc. Natl. Acad. Sci. USA, 88, 10362–10366 (1991).
  • 29) Bessette, P. H., Aslund, F., Beckwith, J., and Georgiou, G., Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA, 96, 13703–13708 (1999).
  • 30) Uchiyama, T., Katouno, F., Nikaidou, N., Nonala, T., Sugiyama, J., and Watanabe, T., Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J. Biol. Chem., 276, 41343–41349 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.