211
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Antioxidative Effects of Glycosyl-ascorbic Acids Synthesized by Maltogenic Amylase to Reduce Lipid Oxidation and Volatiles Production in Cooked Chicken Meat

, , , , &
Pages 36-43 | Received 01 May 2003, Accepted 15 Aug 2003, Published online: 22 May 2014

  • 1) Cort, W. M., Antioxidant properties of ascorbic acid in foods. In “Advances in Chemistry Series, No. 200, Ascorbic Acid: Chemistry, Metabolism, and Uses”, eds. Seib, P. A., and Tolbert, B. M., American Chemical Society, Washington, D.C., pp. 31–45 (1982).
  • 2) Elliott, J. G., Application of antioxidant vitamins in foods and beverages. Food Technol., 53, 46–48 (1999).
  • 3) Kitts, D. D., An evaluation of the multiple effects of the antioxidant vitamins. Trends Food Sci. Technol., 8, 198–203 (1997).
  • 4) Schaefer, D. M., Liu, Q., Faustman, C., and Yin, M.-C., Supranutritional administration of vitamins E and C improves oxidative stability of beef. J. Nutr., 125, 1792S–1798S (1995).
  • 5) Frei, B., England, L., and Ames, B. N., Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. U.S.A., 86, 6377–6381 (1989).
  • 6) Carr, A. C., and Frei, B., Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr., 69, 1086–1107 (1999).
  • 7) Tajima, S., and Pinnell, R. S., Regulation of collagen synthesis by ascorbic acid: ascorbic acid increases type I procollagen mRNA. Biochem. Biophys. Res. Commun., 106, 632–637 (1982).
  • 8) Murad, S., Grove, D., Lindberg, K. A., Reynolds, G., Sivarajah, A., and Pinnell, S. R., Regulation of collagen synthesis by ascorbic acid. Proc. Natl. Acad. Sci. U.S.A., 78, 2879–2882 (1981).
  • 9) Gershoff, S. N., Vitamin C (ascorbic acid); new roles, new requirements? Nutr. Rev., 51, 313–326 (1993).
  • 10) King, A. J., Uijttenboogaart, T. G., and de Vries, A. W., α-Tocopherol, β-carotene and ascorbic acid as antioxidants in stored poultry muscle. J. Food Sci., 60, 1009–1012 (1995).
  • 11) Tolbert, B. M., Downing, M., Carlson, R. W., Knight, M. K., and Baker, E. M., Chemistry and metabolism of ascorbic acid and ascorbate sulfate. Ann. N. Y. Acad. Sci., 258, 48–69 (1975).
  • 12) Yamamoto, I., Muto, N., Murakami, K., Suga, S., and Yamaguchi, H., L-ascorbic acid α-glucoside formed by regioselective transglucosylation with rat intestinal and rice seed α-glucosidases: its improved stability and structure determination. Chem. Pharm. Bull., 38, 3020–3023 (1990).
  • 13) Lee, C. H., Seib, P. A., Liang, Y. T., Hoseney, R. C., and Deyoe, C. W., Chemical synthesis of several phosphoric esters of L-ascorbic acid. Carbohydr. Res., 67, 127–138 (1978).
  • 14) Kim, S.-S., Han, Y.-J., Hwang, T.-J., Roh, H.-J., Hahm, T.-S., Chung, M.-S., and Shin, S.-G., Microencapsulation of ascorbic acid in sucrose and lactose by cocrystallization. Food Sci. Biotechnol., 10, 101–107 (2001).
  • 15) Yamamoto, I., Muto, N., Nagata, E., Nakamura, T., and Suzuki, Y., Formation of a stable L-ascorbic acid α-glucoside by mammalian α-glucosidase catalyzed transglucosylation. Biochim. Biophys. Acta, 1035, 44–50 (1990).
  • 16) Park, K. H., Kim, M. J., Lee, H. S., Han, N. S., Kim, D., and Robyt, J. F., Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr. Res., 313, 2235–2246 (1998).
  • 17) Bae, H. K., Lee, S.-B., Shin, J. H., Lee, H. Y., Kim, M.-J., Baek, J.-S., and Park, K.-H., Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enchance its oxidative stability. J. Agric. Food Chem., 50, 3309–3316 (2002).
  • 18) Kim, Y. K., Kim, M. J., Park, C. S., and Park, K. H., Modification of sorbitol by transglycosylation using Bacillus stearothermophilus maltogenic amylase. Food Sci. Biotechnol., 11, 401–406 (2002).
  • 19) Shamberger, R. J., Smaberger, B. A., and Willis, C. E., Malonaldehyde content of food. J. Nutr., 107, 1404–1414 (1977).
  • 20) Miller, G. L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31, 426–428 (1959).
  • 21) Buege, J. A., and Aust, S. D., Microsomal lipid peroxidation. In “Methods in Enzymology” 52, eds. Fleischer, S., and Packer, L., Academic Press, New York, pp. 302–316 (1978).
  • 22) Ahn, D. U., Jo, C., and Olson, D. G., Headspace oxygen in sample vials affects volatiles production of meat during the automated purge-and-trap/GC analyses. J. Agric. Food Chem., 47, 2776–2781 (1999).
  • 23) Buckley, D. J., Gray, J. I., Ashgar, A., Price, J. F., Crackle, R. L., Booren, A. M., Pearson, A. M., and Miller, E. R., Effects of dietary antioxidants and oxidized oil on membranal lipid stability and pork product quality. J. Food Sci., 61, 729–733 (1996).
  • 24) Chen, X., Jo, C., Lee, J. I., and Ahn, D. U., Lipid oxidation, volatiles and color changes of irradiated pork patties as affected by antioxidants. J. Food Sci., 64, 16–19 (1999).
  • 25) Frankel, E. N., Volatile lipid oxidation products. Prog. Lipid Res., 22, 1–33 (1982).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.