351
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Effects of edd and pgi Disruptions on Inosine Accumulation in Escherichia coli

, , , &
Pages 1248-1255 | Received 19 Nov 2004, Accepted 14 Apr 2005, Published online: 22 May 2014

  • 1) Teshiba, S., and Furuya, A., Mechanisms of 5′-inosinic acid accumulation by permeability mutants of Brevibacterium ammoniagenes. I. Genetical improvement of 5′-IMP productivity of a permeability mutant of B. ammoniagenes. Agric. Biol. Chem., 46, 2257–2263 (1982).
  • 2) Yoshikawa, M., Kato, T., and Takenishi, T., Studies of phosphorylation. III. Selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jpn., 42, 3505–3508 (1969).
  • 3) Mori, H., Iida, A., Fujio, T., and Teshiba, S., A novel process of inosine 5′-monophosphate production using overexpressed guanosine/inosine kinase. Appl. Microbiol. Biotechnol., 48, 693–698 (1997).
  • 4) Mihara, Y., Utagawa, T., Yamada, H., and Asano, Y., Phosphorylation of nucleosides by the mutated acid phosphatase from Morganella morganii. Appl. Environ. Microbiol., 66, 2811–2816 (2000).
  • 5) Nogami, I., Kida, M., Iijima, T., and Yoneda, M., Studies on the fermentative production of purine derivatives. Part I. Derivation of guanosine and inosine-producing mutants from a Bacillus strain. Agric. Biol. Chem., 32, 144–152 (1968).
  • 6) Ishii, K., and Shiio, I., Improved inosine production and derepression of purine nucleotide biosynthetic enzymes in 8-azaguanine resistant mutants of Bacillus subtilis. Agric. Biol. Chem., 36, 1511–1522 (1972).
  • 7) Matsui, H., Sato, K., Enei, H., and Takinami, K., 5′-Nucleotidase activity in improved inosine-producing mutants of Bacillus subtilis. Agric. Biol. Chem., 46, 2347–2352 (1982).
  • 8) Furuya, A., Abe, S., and Kinoshita, S., Production of nucleic acid-related substances by fermentation processes. XXXIII. Accumulation of inosine by a mutant of Brevibacterium ammoniagenes. Appl. Microbiol., 20, 263–270 (1970).
  • 9) Kotani, Y., Yamaguchi, K., Kato, F., and Furuya, A., Inosine accumulation by mutants of Brevibacterium ammoniagenes: strain improvement and culture conditions. Agric. Biol. Chem., 42, 399–405 (1978).
  • 10) Zalkin, H., and Nygaard, P., Biosynthesis of purine nucleotides. In “Escherichia coli and Salmonella: Cellular and Molecular Biology” Vol. 2 2nd ed., ASM Press, Washington, DC, pp. 561–579 (1996).
  • 11) Blattner, F. R., Plunkett, G., III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirpatrick, H. A., Goeden, M. A., Rose, D. J., Maw, B., and Shao, Y., The complete genome sequence of Escherichia coli K-12. Science, 277, 1453–1474 (1997).
  • 12) Matsuyama, S., and Mizushima, S., Construction and characterization of a deletion mutant lacking micF, a proposed regulatory gene for OmpF synthesis in Escherichia coli. J. Bacteriol., 162, 1196–1202 (1985).
  • 13) Kato, C., Ohmiya, R., and Mizuno, T., A rapid method for disrupting genes in the Escherichia coli genome. Biosci. Biotechnol. Biochem., 62, 1826–1829 (1998).
  • 14) Bachmann, B. J., Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev., 36, 525–530 (1972).
  • 15) Matsui, H., Kawasaki, H., Shimaoka, M., and Kurahashi, O., Investigation of various genotype characteristics for inosine accumulation in Escherichia coli W3110. Biosci. Biotechnol. Biochem., 65, 570–578 (2001).
  • 16) Zhou, G., Smith, J. L., and Zalkin, H., Binding of purine nucleotides to two regulatory sites results in synergistic feedback inhibition of glutamine 5-phosphoribosylpyrophosphate amidotransferase. J. Biol. Chem., 269, 6784–6789 (1994).
  • 17) Smith, J. L., Zalzec, E. J., Wery, J. P., Niu, L., Switzer, R. L., Zalkin, H., and Satow, Y., Structure of the allosteric regulatory enzyme of purine biosynthesis. Science, 264, 1427–1433 (1994).
  • 18) Eisenberg, R. C., and Dobrogosz, W. J., Gluconate metabolism in Escherichia coli. J. Bacteriol., 93, 941–949 (1967).
  • 19) Zalbotny, R., and Fraenkel, D. G., Glucose and gluconate metabolism in a mutant of Escherichia coli lacking gluconate-6-phosphate dehydrogenase. J. Bacteriol., 93, 1579–1581 (1967).
  • 20) Yanisch-Perron, C., Vieria, J., and Messing, J., Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene, 33, 103–110 (1985).
  • 21) Carter, A. T., Pearson, B. M., Dickinson, J. R., and Lancashire, W. E., Sequence of the Escherichia coli K-12 edd and eda genes of the Entner-Doudoroff pathway. Gene, 130, 155–156 (1993).
  • 22) Lyngstadaas, A., Lobner-Olesen, A., and Boye, E., Characterization of three genes in the dam-containing operon of Escherichia coli. Mol. Gen. Genet., 247, 546–554 (1995).
  • 23) Rowley, D. L., and Wolf, R. E., Jr., Molecular characterization of the Escherichia coli K-12 zwf gene encoding glucose 6-phosphate dehydrogenase. J. Bacteriol., 173, 968–977 (1991).
  • 24) Froman, B. E., Tait, R. C., and Gottlieb, L. D., Isolation and characterization of the phosphoglucose isomerase gene from Escherichia coli. Mol. Gen. Genet., 217, 126–131 (1989).
  • 25) Matsui, H., Shimaoka, M., Kawasaki, H., Takenaka, Y., and Kurahashi, O., Adenine deaminase activity of the yicP gene product of Escherichia coli. Biosci. Biotechnol. Biochem., 65, 1112–1118 (2001).
  • 26) Kamada, N., Yasuhara, A., and Ikeda, M., Significance of the non-oxidative route of the pentose phosphate pathway for supplying carbon to the purine-nucleotide pathway in Corynebacterium ammoniagenes. J. Ind. Microbiol. Biotechnol., 30, 129–132 (2003).
  • 27) Kamada, N., Yasuhara, A., Takano, Y., Nakano, T., and Ikeda, M., Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes. Appl. Microbiol. Biotechnol., 6, 710–717 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.