618
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effects of N-Glycosylation and Inositol on the ER Stress Response in Yeast Saccharomyces cerevisiae

, &
Pages 1274-1280 | Received 12 Jan 2005, Accepted 06 May 2005, Published online: 22 May 2014

  • 1) Sidrauski, C., Chapman, R., and Walter, P., The unfolded protein response: an intracellular signaling pathway with many surprising features. Trends Cell. Biol., 8, 245–249 (1998).
  • 2) Kaufman, R. J., Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev., 13, 1211–1233 (1999).
  • 3) Mori, K., Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell, 101, 451–454 (2000).
  • 4) Kohno, K., Normington, K., Sambrook, J., Gething, M. J., and Mori, K., The promoter region of the yeast KAR2(BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell. Biol., 13, 877–890 (1993).
  • 5) Cox, J. S., Shamu, C. E., and Walter, P., Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 73, 1197–1206 (1993).
  • 6) Mori, K., Ma, W., Gething, M.-J., and Sambrook, J., A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell, 74, 743–756 (1993).
  • 7) Cox, J. S., and Walter, P., A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell, 87, 394–404 (1996).
  • 8) Nikawa, J., and Yamashita, S., IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol prototrophy in Saccharomyces cerevisiae. Mol. Microbiol., 6, 1441–1446 (1992).
  • 9) Nikawa, J., Akiyoshi, M., Hirata, S., and Fukuda, T., Saccharomyces cerevisiae IRE2/HAC1 is involved in IRE1-mediated KAR2 expression. Nucl. Acids Res., 24, 4222–4226 (1996).
  • 10) Dean-Johnson, M., and Henry, S., Biosynthesis of inositol in yeast: primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus. J. Biol. Chem., 264, 1274–1283 (1989).
  • 11) Nikawa, J., Tsukagoshi, Y., and Yamashita, S., Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J. Biol. Chem., 266, 11184–11191 (1991).
  • 12) Nikawa, J., Hosaka, K., and Yamashita, S., Differential regulation of two myo-inositol transporter genes of Saccharomyces cerevisiae. Mol. Microbiol., 10, 955–961 (1993).
  • 13) Paltauf, F., Kohlwein, S. D., and Henry, S. A., “The Molecular and Cellular Biology of the Yeast Saccharomyces” Vol. 2, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1992).
  • 14) Greenberg, M. L., and Lopes, J. M., Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev., 60, 1–20 (1996).
  • 15) Nikawa, J., and Hosaka, K., Isolation and characterization of genes that promote the expression of inositol transporter gene ITR1 in Saccharomyces cerevisiae. Mol. Microbiol., 16, 301–308 (1995).
  • 16) Burda, P., and Aebi, M., The ALG10 locus of Saccharomyces cerevisiae encodes the alpha-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology, 8, 455–462 (1998).
  • 17) Imbach, T., Burda, P., Kuhnert, P., Wevers, R. A., Aebi, M., Berger, E. G., and Hennet, T., A mutation in the human ortholog of the Saccharomyces cerevisiae ALG6 gene causes carbohydrate-deficient glycoprotein syndrome type-Ic. Proc. Natl. Acad. Sci. U.S.A., 96, 6982–6987 (1999).
  • 18) Stagljar, I., te Heesen, S., and Aebi, M., New phenotype of mutations deficient in glucosylation of the lipid-linked oligosaccharide: cloning of the ALG8 locus. Proc. Natl. Acad. Sci. U.S.A., 91, 5977–5981 (1994).
  • 19) Jakob, C. A., Burda, P., Roth, J., and Aebi, M., Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J. Cell. Biol., 142, 1223–1233 (1998).
  • 20) Maniatis, T., Fritsch, E. F., and Sambrook, J., Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).
  • 21) Nikawa, J., and Kawabata, M., PCR- and ligation-mediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae. Nucl. Acids Res., 26, 860–861 (1998).
  • 22) Clark, J. M., Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucl. Acids Res., 16, 9677–9686 (1988).
  • 23) Yamashita, S., and Oshima, A., Regulation of phosphatidylethanolamine methyltransferase level by myo-inositol in Saccharomyces cerevisiae. Eur. J. Biochem., 104, 611–616 (1980).
  • 24) Ito, H., Fukuda, Y., Murata, K., and Kimura, A., Transformation of intact yeast cells treated with alkali cations. J. Bacteriol., 153, 163–168 (1983).
  • 25) Sugiyama, M., and Nikawa, J., The Saccharomyces cerevisiae Isw2p-Itc1p complex represses INO1 expression and maintains cell morphology. J. Bacteriol., 183, 4985–4993 (2001).
  • 26) Hosaka, K., Murakami, T., Kodaki, T., Nikawa, J., and Yamashita, S., Repression of choline kinase by inositol and choline in Saccharomyces cerevisiae. J. Bacteriol., 172, 2005–2012 (1990).
  • 27) Kostova, Z., and Wolf, D. H., For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J., 22, 2309–2317 (2003).
  • 28) Ellgaard, L., and Helenius, A., Quality control in the endoplasmic reticulum. Mol. Cell. Biol., 4, 181–191 (2003).
  • 29) McLaurin, J., Golomb, R., Jurewicz, A., Antel, J. P., and Fraser, P. E., Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit Aβ-induced toxicity. J. Biol. Chem., 275, 18495–18502 (2000).
  • 30) Cox, J. S., Chapman, R. E., and Walter, P., The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell, 8, 1805–1814 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.