84
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Stimulation of Various Functions in Murine Peritoneal Macrophages by Glucans Produced by Glucosyltransferases from Streptococcus mutans

, , , , &
Pages 1693-1699 | Received 10 Mar 2005, Accepted 18 May 2005, Published online: 22 May 2014

  • 1) Surh, Y. J., Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-imflammatory activities: a short review. Food Chem. Toxicol., 40, 1091–1097 (2002).
  • 2) Gao, X., Kuo, J., Jiang, H., Deeb, D., Liu, Y., Divine, G., Chapman, R. A., Dulchavsky, S. A., and Gautam, S. C., Immunomodulatory activity of curcumin: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochem. Pharmacol., 68, 51–61 (2004).
  • 3) Yun, C. H., Estrado, A., Van Kessel, A., Park, B. C., and Laarveld, B., β-Glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol. Med. Microbiol., 35, 67–75 (2003).
  • 4) Choi, E. M., Lim, T. S., Lee, H. L., and Hwang, J. K., Immune cell stimulating activity of wheat arabinoxylan. Kor. J. Food Sci. Technol., 34, 510–517 (2002).
  • 5) Seljelid, R., Rasmussen, L. T., Larm, O., and Hoffman, J., The protective effect of beta 1-3-D-glucan-derivatized plastic beads against Escherichia coli infection in mice. Scand. J. Immunol., 25, 55–60 (1987).
  • 6) Rechner, J. S., Fitzpatrick, P. A., Wakshull, E., and Albina, J. E., Receptor-mediated phagocytosis of rat macrophages is regulated differentially for opsonized particles containing beta-glucan. Immunology, 104, 198–206 (2001).
  • 7) Bogwald, J., Johson, E., Hoffman, J., and Seljelid, R., Lysozomal glycosidases in mouse peritoneal macrophages stimulated in vitro with soluble and insoluble glycans. J. Leukoc. Biol., 35, 357–371 (1984).
  • 8) Tapper, H., and Sundler, R., Glucan receptor and zymosan-induced lysosomal enzyme secretion in macrophages. Biochem. J., 306, 829–835 (1995).
  • 9) Doita, M., Rasmussen, L. T., Seljelid, R., and Lipsky, P. E., Effect of soluble aminated beta-1,3-D-polyglucose on human monocytes: stimulation of cytokine and prostaglandin E2 production but not antigen-presenting function. J. Leukoc. Biol., 49, 342–351 (1991).
  • 10) Estrada, A., Van Kessel, A., Yun, C. H., and Li, B., Effect of endotoxin on cytokine production and cell dynamics in mice. Immunopharmacol. Immunotoxicol., 20, 217–231 (1998).
  • 11) Adachi, Y., Ohno, N., and Yodamae, T., Inhibitory effect of β-glucans on zymosan-mediated hydrogen peroxide production by murine peritoneal macrophages in vitro. Biol. Pharm. Bull., 16, 462–467 (1993).
  • 12) Ohya, Y., Nishimoto, T., Murata, J., and Ouchi, T., Immunological enhancement activity of muramyl dipeptide analogue/CM-curdlan conjugate. Carbohydr. Polym., 23, 47–54 (1994).
  • 13) Bohn, J. A., and BeMiller, J. N., (1→3) β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym., 28, 3–14 (1995).
  • 14) Cerenius, L., Liang, Z., Duvic, B., Keyser, P., and Hellman, U., Structure and biological activity of 1,3-β-D-glucan-binding protein in crustacean blood. J. Biol. Chem., 269, 29462–29467 (1994).
  • 15) Tokumaka, K., Ohno, N., Adachi, Y., Tanaka, S., Tamura, H., and Yadome, T., Immunopharmacological and immunotoxicological activities of a water soluble (1→3)-β-D-glucan, CSBG, from Candida spp. Int. J. Immunopharmacol., 22, 383–394 (2000).
  • 16) Nathan, C. F., Secretory products of macrophages. J. Clin. Invest., 79, 319–326 (1987).
  • 17) Stuelp-Campelo, P. M., de Oilveira, M. B. M., Leão, A. M. A. C., Carbonero, E. R., Gorin, P. A. J., and Iacomini, M., Effect of a soluble α-D-glucan from the lichenized fungus Ramalina celastri on macrophage activity. Int. Immunopharmacol., 2, 691–698 (2002).
  • 18) Molinaro, A., Lanzetta, R., Mancino, A., Evidente, A., Rosa, M. D., and Ianaro, A., Immunostimulant (1→3)-D-glucans from the cell wall of Cryphonectria parasitica (Murr.) Barr strain 263. Carbohydr. Res., 329, 442–445 (2000).
  • 19) Han, S. B., Park, S. H., Lee, K. H., Lee, C. W., Lee, S. H., Kim, H. C., Kim, Y. S., Lee, H. S., and Kim, H. M., Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells. Int. Immunophamarcol., 1, 1969–1978 (2001).
  • 20) Sakurai, T., Ohno, N., Suzuki, I., and Yadomae, T., Effect of soluble fungal (1→3)-β-D-glucan obtained from Sclerotinia sclerotiorum on alveolar macrophage activation. Immunophamacol., 30, 157–166 (1995).
  • 21) Alaluusua, S., Gronroos, L., Zhu, X., Saarela, M., Matto, J., Asikainen, S., and Fukushima, K., Production of glucosyltransferases by clinical mutans streptococcal isolates as determined by semiquantitative cross-dot assay. Arch. Oral Biol., 42, 417–422 (1997).
  • 22) Hare, M. D., Svensson, S., and Walker, G. J., Characterization of the extracellular, water-insoluble glucans of oral streptococci by methylation analysis, and by enzymic synthesis and degradation. Carbohydr. Res., 66, 245–264 (1978).
  • 23) Hakomari, S., A rapid premethylation of glycolipid and polysaccharide catalyzed by methylsulphinyl carbanion in dimethyl sulfoxide. J. Biochem., 55, 205–208 (1966).
  • 24) Sweet, D. P., Shapiro, R. H., and Albersheim, P., Quantitative analysis by various g.l.c. response factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res., 40, 217–225 (1975).
  • 25) Colby, S. M., and Russell, R. R. B., Sugar metabolism by mutans streptococci. J. Appl. Microbiol. Symp. Supply, 83, 80S–88S (1997).
  • 26) De Duve, C., and Wattiaux, R., Functions of lysosome. Ann. Rev. Physiol., 28, 435–442 (1966).
  • 27) Lowenstein, C. J., Dinerman, J. L., and Snyder, S. H., Nitric oxide: A physiologic messenger. Ann. Int. Med., 120, 227–237 (1994).
  • 28) Klebanoff, S. J., Phagocytic cells: Production of oxygen metabolism in inflammation. In “Basic Principles and Clinical Correlates”, eds. Gallin, J. I., Goldstein, I. M., and Snyderman, R., Raven Press, New York, pp. 391–444 (1988).
  • 29) Duerksen-Hughes, P. J., Day, D., Laster, S. M., Zachariades, N. A., Aquino, L., and Gooding, L. R., Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J. Immunol., 149, 2114–2122 (1992).
  • 30) Stuehr, D. J., and Nathan, C. F., Nitric oxide. A macrophage product responsible for cytotasis and respiratory inhibition in tumor target cells. J. Exp. Med., 169, 1543–1555 (1989).
  • 31) Burger, R. A., Torres, A. R., Warren, R. P., Caldwell, V. D., and Hughes, B., Echinacea-induced cytokine production by human macrophages. Int. J. Immunopharmacol., 19, 371–379 (1997).
  • 32) Kim, G. Y., Choi, G. S., Lee, S. H., and Park, Y. M., Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-α from peritoneal macrophages. J. Ethnopharmacol., 95, 69–76 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.