371
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Heterologous Overexpression of a Mutant Termite Cellulase Gene in Escherichia coli by DNA Shuffling of Four Orthologous Parental cDNAs

, &
Pages 1711-1720 | Received 05 Apr 2005, Accepted 02 Jun 2005, Published online: 22 May 2014

  • 1) Brune, A., Termite guts: the world’s smallest bioreactors. Trends Biotechnol., 16, 16–21 (1998).
  • 2) Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., Bandi, C., and Noda, H., Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol., 10, 801–804 (2000).
  • 3) Watanabe, H., Noda, H., Tokuda, G., and Lo, N., A cellulase gene of termite origin. Nature, 394, 330–331 (1998).
  • 4) Watanabe, H., Nakashima, K., Saito, H., and Slaytor, M., New endo-beta-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites. Cell. Mol. Life Sci., 59, 1983–1992 (2002).
  • 5) Nakashima, K. I., Watanabe, H., and Azuma, J. I., Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cell. Mol. Life Sci., 59, 1554–1560 (2002).
  • 6) Ohtoko, K., Ohkuma, M., Moriya, S., Inoue, T., Usami, R., and Kudo, T., Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles, 4, 343–349 (2000).
  • 7) Tokuda, G., Lo, N., Watanabe, H., Slaytor, M., Matsumoto, T., and Noda, H., Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta, 1447, 146–159 (1999).
  • 8) Lee, S. J., Kim, S. R., Yoon, H. J., Kim, I., Lee, K. S., Je, Y. H., Lee, S. M., Seo, S. J., Dae Sohn, H., and Jin, B. R., cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 139, 107–116 (2004).
  • 9) Khademi, S., Guarino, L. A., Watanabe, H., Tokuda, G., and Meyer, E. F., Structure of an endoglucanase from termite, Nasutitermes takasagoensis. Acta Cryst. D, 58, 653–659 (2002).
  • 10) Watanabe, H., and Tokuda, G., Animal cellulases. Cell. Mol. Life Sci., 58, 1167–1178 (2001).
  • 11) Nakashima, K., Watanabe, H., Saitoh, H., Tokuda, G., and Azuma, J. I., Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem. Mol. Biol., 32, 777–784 (2002).
  • 12) Fukatsu, T., Acetone preservation: a practical technique for molecular analysis. Mol. Ecol., 8, 1935–1945 (1999).
  • 13) Stemmer, W. P., Rapid evolution of a protein in vitro by DNA shuffling. Nature, 370, 389–391 (1994).
  • 14) Stemmer, W. P., DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. U.S.A., 91, 10747–10751 (1994).
  • 15) Teather, R. M., and Wood, P. J., Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol., 43, 777–780 (1982).
  • 16) Jue, C. K., and Lipke, P. N., Determination of reducing sugars in the nanomole range with tetrazolium blue. J. Biochem. Biophys. Methods, 11, 109–115 (1985).
  • 17) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 18) Scrivener, A. M., and Slaytor, M., Properties of the endogenous cellulase from Panesthia cribrata Saussure and purification of major endo-beta-1,4-glucanase components. Insect Biochem. Mol. Biol., 24, 223–231 (1994).
  • 19) Sakon, J., Irwin, D., Wilson, D. B., and Karplus, P. A., Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat. Struct. Biol., 4, 810–818 (1997).
  • 20) Watanabe, H., Nakamura, M., Tokuda, G., Yamaoka, I., Scrivener, A. M., and Noda, H., Site of secretion and properties of endogenous endo-beta-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem. Mol. Biol., 27, 305–313 (1997).
  • 21) Tokuda, G., Watanabe, H., Matsumoto, T., and Noda, H., Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-beta-1,4-glucanase. Zoolog. Sci., 14, 83–93 (1997).
  • 22) Yano, T., Oue, S., and Kagamiyama, H., Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. U.S.A., 95, 5511–5515 (1998).
  • 23) Miyazaki, K., Wintrode, P. L., Grayling, R. A., Rubingh, D. N., and Arnold, F. H., Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol., 297, 1015–1026 (2000).
  • 24) Moore, J. C., and Arnold, F. H., Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol., 14, 458–467 (1996).
  • 25) Moore, J. C., Jin, H. M., Kuchner, O., and Arnold, F. H., Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J. Mol. Biol., 272, 336–347 (1997).
  • 26) Zhao, H., and Arnold, F. H., Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng., 12, 47–53 (1999).
  • 27) Lebbink, J. H., Kaper, T., Bron, P., van der Oost, J., and de Vos, W. M., Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry, 39, 3656–3665 (2000).
  • 28) Hsu, J. S., Yang, Y. B., Deng, C. H., Wei, C. L., Liaw, S. H., and Tsai, Y. C., Family shuffling of expandase genes to enhance substrate specificity for penicillin G. Appl. Environ. Microbiol., 70, 6257–6263 (2004).
  • 29) Giver, L., Gershenson, A., Freskgard, P. O., and Arnold, F. H., Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. U.S.A., 95, 12809–12813 (1998).
  • 30) Li, L., Frohlich, J., Pfeiffer, P., and Konig, H., Termite gut symbiotic archaezoa are becoming living metabolic fossils. Eukaryot. Cell, 2, 1091–1098 (2003).
  • 31) Suzuki, K. I., Ojima, T., and Nishita, K., Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur. J. Biochem., 270, 771–778 (2003).
  • 32) Lo, N., Watanabe, H., and Sugimura, M., Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc. R. Soc. Lond. B Biol. Sci., 270 (Suppl. 1), S69–72 (2003).
  • 33) Byrne, K. A., Lehnert, S. A., Johnson, S. E., and Moore, S. S., Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene, 239, 317–324 (1999).
  • 34) Kurokawa, J., Hemjinda, E., Arai, T., Kimura, T., Sakka, K., and Ohmiya, K., Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3c carbohydrate-binding module. Appl. Microbiol. Biotechnol., 59, 455–461 (2002).
  • 35) Liu, Y., Zhang, J., Liu, Q., Zhang, C., and Ma, Q., Molecular cloning of novel cellulase genes cel9A and cel12A from Bacillus licheniformis GXN151 and synergism of their encoded polypeptides. Curr. Microbiol., 49, 234–238 (2004).
  • 36) Zhou, W., Irwin, D. C., Escovar-Kousen, J., and Wilson, D. B., Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry, 43, 9655–9663 (2004).
  • 37) Lopez-Contreras, A. M., Martens, A. A., Szijarto, N., Mooibroek, H., Claassen, P. A., van der Oost, J., and de Vos, W. M., Production by Clostridium acetobutylicum ATCC 824 of CelG, a cellulosomal glycoside hydrolase belonging to family 9. Appl. Environ. Microbiol., 69, 869–877 (2003).
  • 38) Hazlewood, G. P., Davidson, K., Laurie, J. I., Huskisson, N. S., and Gilbert, H. J., Gene sequence and properties of CelI, a family E endoglucanase from Clostridium thermocellum. J. Gen. Microbiol., 139 (Pt 2), 307–316 (1993).
  • 39) Gilad, R., Rabinovich, L., Yaron, S., Bayer, E. A., Lamed, R., Gilbert, H. J., and Shoham, Y., CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J. Bacteriol., 185, 391–398 (2003).
  • 40) Belaich, A., Parsiegla, G., Gal, L., Villard, C., Haser, R., and Belaich, J. P., Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome. J. Bacteriol., 184, 1378–1384 (2002).
  • 41) Arai, T., Ohara, H., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K., Sequence of celQ and properties of celQ, a component of the Clostridium thermocellum cellulosome. Appl. Microbiol. Biotechnol., 57, 660–666 (2001).
  • 42) Avitia, C. I., Castellanos-Juarez, F. X., Sanchez, E., Tellez-Valencia, A., Fajardo-Cavazos, P., Nicholson, W. L., and Pedraza-Reyes, M., Temporal secretion of a multicellulolytic system in Myxobacter sp. AL-1: Molecular cloning and heterologous expression of cel9 encoding a modular endocellulase clustered in an operon with cel48, an exocellobiohydrolase gene. Eur. J. Biochem., 267, 7058–7064 (2000).
  • 43) Irwin, D., Shin, D. H., Zhang, S., Barr, B. K., Sakon, J., Karplus, P. A., and Wilson, D. B., Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol., 180, 1709–1714 (1998).
  • 44) Hitomi, J., Hatada, Y., Kawaminami, S., Kawai, S., and Ito, S., Amino acid sequence and stereoselective hydrolytic reaction of an endo-1,4-beta-glucanase from a Bacillus strain. Biosci. Biotechnol. Biochem., 61, 2004–2009 (1997).
  • 45) Gal, L., Gaudin, C., Belaich, A., Pages, S., Tardif, C., and Belaich, J. P., CelG from Clostridium cellulolyticum: a multidomain endoglucanase acting efficiently on crystalline cellulose. J. Bacteriol., 179, 6595–6601 (1997).
  • 46) Malburg, L. M., Jr., Iyo, A. H., and Forsberg, C. W., A novel family 9 endoglucanase gene (celD), whose product cleaves substrates mainly to glucose, and its adjacent upstream homolog (celE) from Fibrobacter succinogenes S85. Appl. Environ. Microbiol., 62, 898–906 (1996).
  • 47) Juy, M., Amit, A., Alzari, P., Poljak, R., Claeyssens, M., Beguin, P., and Aubert, J.-P., Three-dimensional structure of a thermostable bacterial cellulase. Nature, 357, 89–91 (1992).
  • 48) Yamaoka, I., and Nagatani, Y., Cellulose digestion system in the termite, Reticulitermes speratus (Kolbe). I. Producing sites and physiological significance of two kinds of cellulase in the worker. Zool. Mag., 84, 23–29 (1975).
  • 49) Yokoe, Y., Cellulase activity in the termite, Leucotermes speratus, with new evidence in support of a cellulase produced by the termite itself. Scient. Pap. Coll. Gen. Educ. Tokyo, 14, 115–120 (1964).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.