655
Views
104
CrossRef citations to date
0
Altmetric
Original Articles

Two-Component Phosphorelay Signal Transduction Systems in Plants: from Hormone Responses to Circadian Rhythms

Pages 2263-2276 | Published online: 22 May 2014

  • 1) Stock, J. B., Ninfa, A. D., and Stock, A. M., Protein phosphorylation and regulation of adaptive response in bacteria. Microbiol. Rev., 53, 450–490 (1989).
  • 2) Bourret, R. B., Borkovich, K. A., and Simon, M. I., Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem., 60, 401–441 (1991).
  • 3) Parkinson, J. S., and Kofoid, E. C., Communication modules in bacterial signaling proteins. Annu. Rev. Genet., 26, 71–112 (1992).
  • 4) Mizuno, T., Kaneko, T., and Tabata, S., Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803. DNA Res., 3, 407–414 (1996).
  • 5) Mizuno, T., Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res., 4, 161–168 (1997).
  • 6) Mizuno, T., Wurtzel, E. T., and Inouye, M., Osmoregulation of gene expression. II. DNA sequence of the envZ gene of the ompB operon of Escherichia coli and characterization of its gene product. J. Biol. Chem., 257, 13692–13698 (1982).
  • 7) Mizuno, T., Chou, M.-Y., and Inouye, M., A unique mechanism regulating gene expression: Translational inhibition by a complementary RNA transcript (micRNA). Proc. Natl. Acad. Sci. U.S.A., 81, 1966–1970 (1984).
  • 8) Mizuno, T., and Mizushima, S., Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of porin genes. Mol. Microbiol., 4, 1077–1082 (1990).
  • 9) Hoch, J. A., and Silhavy, T. J., “Two-Component Signal Transduction”, ASM Press, Washington, D.C. (1995).
  • 10) Aiba, H., Mizuno, T., and Mizushima, S., Transfer of phosphoryl group between two regulatory proteins involved in osmoregualtory expression of the ompF and ompC genes in Escherichia coli. J. Biol. Chem., 264, 8563–8567 (1989).
  • 11) Aiba, H., Nakasai, F., Mizushima, S., and Mizuno, T., Evidence for the physiological importance of the phosphotransfer between the two regulatory components, EnvZ and OmpR, in the osmoregulation in Escherichia coli. J. Biol. Chem., 264, 14090–14094 (1989).
  • 12) Ishige, K., Nagosawa, S., Tokishita, S., and Mizuno, T., A novel device of bacterial signal transducers. EMBO J., 13, 5195–5202 (1994).
  • 13) Tsuzuki, T., Ishige, K., and Mizuno, T., Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli. Mol. Microbiol., 18, 953–962 (1995).
  • 14) Matsushika, A., and Mizuno, T., Mutational analysis of the histidien-containing phosphotransfer (HPt) signaling domain of the ArcB sensor in Escherichia coli. Biosci. Biotechnol. Biochem., 62, 2236–2238 (1998).
  • 15) Kato, M., Mizuno, T., Shimizu, T., and Hakoshima, T., Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell, 88, 717–723 (1997).
  • 16) Appleby, J. L., Parkinson, J. S., and Bourret, R. B., Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell, 86, 845–848 (1996).
  • 17) Mizuno, T., His–Asp phosphotransfer signal transduction. J. Biochem., 123, 555–563 (1998).
  • 18) Wurgler-Murphy, S. M., and Saito, H., Two-component signal transducers and MAPK cascades. Trends Biochem. Sci., 22, 172–176 (1997).
  • 19) Perraud, A. L., Weiss, V., and Gross, R., Signaling pathways in two-component phosphorelay systems. Trends Microbiol., 7, 115–120 (1999).
  • 20) Alex, L. A., Borkovich, K. A., and Simon, M. I., Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc. Natl. Acad. Sci. U.S.A., 93, 3416–3421 (1996).
  • 21) Schuster, S. C., Noegel, A. A., Oehmen, F., Gerisher, G., and Simon, M. I., The hybrid histidine kinase DokA is part of the osmotic response system of Dictyostelium. EMBO J., 15, 3880–3889 (1996).
  • 22) Hagiwara, D., Yamashino, T., and Mizuno, T., Genome-wide comparison of the His-to-Asp phosphorelay signaling components of three symbiotic genera of Rhizobia. DNA Res., 11, 57–65 (2004).
  • 23) Chang, C., Kwok, S. F., Bleeker, A. B., and Meyerowitz, E. M., Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262, 539–544 (1993).
  • 24) Nagasawa, S., Tokishita, S., Aiba, H., and Mizuno, T., A novel sensor-regulator protein that belongs to the homologous family of signal transduction proteins involved in adaptive responses in Escherichia coli. Mol. Microbiol., 6, 799–807 (1992).
  • 25) Kakimoto, T., CKI1, a histidine kinase homology implicated in cytokinin signal transduction. Science, 274, 982–985 (1996).
  • 26) Mok, D. W., and Mok, M. C., Cytokinin metabolism and action. Annu. Rev. Plant Biol., 52, 89–118 (2001).
  • 27) Imamura, A., Hanaki, N., Umeda, H., Nakamura, A., Suzuki, T., Ueguchi, C., and Mizuno, T., Response regulators implicated in His–Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 95, 2691–2696 (1998).
  • 28) Urao, T., Yakubov, B., Shinozaki-Yamaguchi, K., and Shinozaki, K., Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett., 427, 175–178 (1998).
  • 29) Suzuki, T., Imamura, A., Ueguchi, C., and Mizuno, T., Histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant Cell Physol., 39, 1258–1268 (1998).
  • 30) Miyata, S., Urao, T., Yamaguchi-Shinozaki, K., and Shinozaki, K., Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Lett., 437, 11–14 (1998).
  • 31) Hwang, I., Chen, H. C., and Sheen, J., Two-component signal transduction pathways in Arabidopsis. Plant Physiol., 129, 500–515 (2002).
  • 32) Harberer, G., and Kieber, J. J., Cytokinins, new insights into a classic phytohormone. Plant Physiol., 128, 354–362 (2002).
  • 33) Kakimoto, T., Perception and signal transduction of cytokinins. Annu. Rev. Plant Biol., 54, 605–627 (2003).
  • 34) Chen, Y.-F., Etheridge, N., and Schaller, E., Ethylene signal transduction. Annals Bot., 95, 901–915 (2005).
  • 35) Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K., and Kakimoto, T., Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 409, 1060–1063 (2001).
  • 36) Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H., and Mizuno, T., The Arabidopsis sensor His–kinase, AHK4, can respond to cytokinin. Plant Cell Physiol., 42, 107–113 (2001).
  • 37) Spichal, L., Yu, N., Riefler, M., Mizuno, T., Romanov, G., Strnad, M., and Schmulling, T., Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in bacterial assay. Plant Cell Physiol., 45, 1299–1305 (2004).
  • 38) Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., Yamashino, T., and Mizuno, T., The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol., 42, 1017–1023 (2001).
  • 39) Suzuki, T., Sakurai, K., Imamura, A., Nakamura, A., Ueguchi, C., and Mizuno, T., Compilation and characterization of histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in plants: AHP signal transducers of Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 64, 2486–2489 (2000).
  • 40) Imamura, A., Hanaki, N., Nakamura, A., Suzuki, T., Taniguchi, M., Kiba, T., Ueguchi, C., Sugiyama, T., and Mizuno, T., Compilation and characterization of Arabisopsis thaliana response regulators implicated in His–Asp phosphorelay signal transduction. Plant Cell Physiol., 40, 733–742 (1999).
  • 41) Imamura, A., Yoshino, Y., and Mizuno, T., Cellular localization of the signaling components of Arabidopsis His-to-Asp phosphorelay. Biosci. Biotechnol. Biochem., 65, 2113–2117 (2001).
  • 42) Kiba, T., Yamada, H., Sato, S., Kato, T., Tabata, S., Yamashino, T., and Mizuno, T., The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol., 44, 868–874 (2003).
  • 43) Kiba, T., Aoki, K., Sakakibara, H., and Mizuno, T., Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotype similar to the wol cytokinin-receptor mutant. Plant Cell Physiol., 45, 1063–1077 (2004).
  • 44) Somers, D. E., Clock-associated genes in Arabidopsis: a family affair. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1415, 1745–1753 (2001).
  • 45) Mizuno, T., Plant response regulators implicated in signal transduction and circadian rhythm. Curr. Opin. Plant Biol., 7, 499–505 (2004).
  • 46) Moussatche, P., and Klee, H. J., Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J. Biol. Chem., 279, 48734–48741 (2004).
  • 47) Qu, X., and Schasller, G. E., Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol., 136, 2961–2970 (2004).
  • 48) Pischke, M. S., Jones, L. G., Otsuga, D., Fernandez, D. E., Drews, G. N., and Sussman, M. R., The Arabidopsis histidine kinase is essential for megagametogenesis. Proc. Natl. Acad. Sci. U.S.A., 99, 15800–15805 (2002).
  • 49) Hejatko, J., Pernisova, M., Eneva, T., Palme, K., and Brzobohaty, B., The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol. Genet. Genomics, 269, 443–453 (2003).
  • 50) Ueguchi, C., Koizumi, H., Suzuki, T., and Mizuno, T., Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol., 42, 231–235 (2001).
  • 51) Higuchi, M., Pischke, M. S., Mahonen, A. P., Miyawaki, K., Hashimoto, Y., Seki, M., Kobayashi, M., Shinozaki, K., Kato, T., Tabata, S., Helariutta, Y., Sussman, M. R., and Kakimoto, T., In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. U.S.A., 23, 8821–8826 (2004).
  • 52) Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., and Ueguchi, C., Genetic analysis of Arabidopsis histidine kinase genes encoding cytokinin receptors reveals their overlapping biological functions in the regulation of shoot and root growth in Arabidopsis thaliana. Plant Cell, 16, 1365–1377 (2004).
  • 53) Hwang, I., and Sheen, J., Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413, 383–389 (2001).
  • 54) Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., and Shinozaki, K., A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell, 11, 1743–1754 (1999).
  • 55) Reiser, V., Raitt, D. C., and Saito, H., Yeast osmosensor Sln1 and plant cytokinin receptor CRE1 respond to changes in turgor pressure. J. Cell. Biol., 161, 1035–1040 (2003).
  • 56) Chen, Y. F., Randlett, M. D., Findell, J. L., and Schaller, G. E., Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J. Biol. Chem., 277, 19861–19866 (2002).
  • 57) Chang, C., Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci., 8, 365–368 (2003).
  • 58) Hass, C., Lohrmann, J., Albrecht, V., Sweere, U., Hummel, F., Yoo, S. D., Hwang, I., Zhu, T., Schafer, E., Kudla, J., and Harter, K., Response regulator 2 mediates ethylene signaling and hormone signal integration in Arabidopsis. EMBO J., 23, 3290–3302 (2004).
  • 59) Tanaka, Y., Suzuki, T., Yamashino, T., and Mizuno, T., Comparative studies of the AHP histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 68, 462–465 (2004).
  • 60) Suzuki, T., Sakurai, K., Ueguchi, C., and Mizuno, T., Two types of putative nuclear factors that physically interact with histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant Cell Physiol., 42, 37–45 (2001).
  • 61) Nakamura, A., Kakimoto, T., Imamura, A., Suzuki, T., Ueguchi, C., and Mizuno, T., Biochemical characterization of putative cytokinin-responsive His–kinase, CKI1, from Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 63, 1627–1630 (1999).
  • 62) Yamada, H., Koizumi, N., Nakamichi, N., Kiba, T., Yamashino, T., and Mizuno, T., Rapid response of Arabidopsis T87 cultured cells to cytokinin through His-to-Asp phosphorelay signal transduction. Biosci. Biotechnol. Biochem., 68, 1966–1976 (2004).
  • 63) Suzuki, T., Ishikawa, K., Yamashino, T., and Mizuno, T., An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol., 43, 123–129 (2002).
  • 64) Kiba, T., Taniguchi, M., Imamura, A., Ueguchi, C., Mizuno, T., and Sugiyama, T., Differential expression of genes for response regulators in response to cytokinins and nitrate in Arabisopsis thalinana. Plant Cell Physiol., 40, 767–771 (1999).
  • 65) Hosoda, K., Imamura, A., Katoh, E., Hatta, T., Tachiki, M., Yamada, H., Mizuno, T., and Yamazaki, T., Molecular structure of the GARP family of plant Myb-related DNA-binding motifs of the Arabidopsis response regulators. Plant Cell, 14, 2015–2029 (2002).
  • 66) Sakai, H., Aoyama, T., and Oka, A., Arabodopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J., 24, 703–711 (2000).
  • 67) Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., Tabata, S., and Oka, A., ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 294, 1919–1921 (2001).
  • 68) Imamura, A., Kiba, T., Tajima, Y., Yamashino, T., and Mizuno, T., In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol., 44, 122–131 (2003).
  • 69) Tajima, Y., Imamura, A., Kiba, T., Amano, Y., Yamashino, T., and Mizuno, T., Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol., 45, 28–29 (2004).
  • 70) Mason, M. G., Li, J., Mathews, D. E., Kieber, J. J., and Schaller, G. E., Type-B response regulators display overlapping expression patterns in Arabidopsis. Plant Physiol., 135, 927–937 (2004).
  • 71) Rashotte, A. M., Carson, S. D. B., To, J. P. C., and Kieber, J. J., Expression profiling of cytokinin action in Arabidopsis. Plant Physiol., 132, 1998–2011 (2003).
  • 72) Che, P., Gingerich, D. J., Lall, S., and Howell, S. H., Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell, 14, 2771–2785 (2002).
  • 73) Kiba, T., Naitou, T., Koizumi, N., Yamashino, T., Sakakibara, H., and Mizuno, T., Combinatorial microarray analysis revealing Arabidopsis genes implicated in cytokinin responses through the His-to-Asp phosphorelay circuitry. Plant Cell Physiol., 46, 339–355 (2005).
  • 74) D’Agostino, I., Deruere, J., and Kieber, J. J., Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol., 124, 1706–1717 (2000).
  • 75) To, J. P. C., Haberer, G., Ferreira, F. J., Deruere, J., Mason, M. G., Schaller, G. E., Alonso, J. M., Echer, J. R., and Kieber, J. J., Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 16, 658–671 (2004).
  • 76) Kiba, T., Yamada, H., and Mizuno, T., Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant Cell Physiol., 43, 1059–1066 (2002).
  • 77) Coello, P., and Polacco, J. C., ARR6, a response regulator from Arabidopsis, is differently regulated by plant nutritional status. Plant Sci., 143, 211–220 (1999).
  • 78) Osakabe, Y., Miyata, S., Urao, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differently in the shoot and in callus formation. Biochem. Biophys. Res. Commun., 293, 806–815 (2002).
  • 79) Mahonen, A. P., Bonke, M., Kauppinen, L., Riikonen, M., Benfey, P. N., and Helariutta, Y., A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev., 14, 2938–2943 (2000).
  • 80) Yamada, H., Hanaki, N., Imamura, A., Ueguchi, C., and Mizuno, T., An Arabidopsis protein that interacts with the cytokinin-inducible response regulator, ARR4, implicated in the His–Asp phosphorelay signal transduction. FEBS Lett., 436, 76–80 (1998).
  • 81) Horak, J., Brzobohaty, B., and Lexa, M., Molecular and physiological characterization of an insertion mutant in the ARR21 putative response regulator gene from Arabidopsis thaliana. Plant Biol., 5, 245–254 (2003).
  • 82) Grefen, C., and Harter, K., Plant two-component systems: principles, functions, complexity and cross talk. Planta, 219, 733–742 (2004).
  • 83) Sweere, U., Eichenberg, K., Lohrmann, J., Mira-Rodado, V., Baurle, I., Kudla, J., Nagy, F., Schafer, E., and Harter, K., Interaction of response regulator ARR4 with phytochrome B in modulating red light signaling. Science, 294, 1108–1111 (2001).
  • 84) Chory, J., Aguilar, N., and Peto, C. A., The phenotype of Arabidopsis thaliana det1 mutants suggests a role for cytokinins in greening. Symp. Soc. Exp. Biol., 45, 21–29 (1991).
  • 85) Makino, S., Kiba, T., Imamura, A., Hanaki, N., Nakamura, A., Suzuki, T., Taniguchi, M., Ueguchi, C., Sugiyama, T., and Mizuno, T., Gene encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol., 41, 791–803 (2000).
  • 86) Matsushika, A., Makino, S., Kojima, M., and Mizuno, T., Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol., 41, 1002–1012 (2000).
  • 87) Mizuno, T., and Nakamichi, N., Pseudo response regulators (PRR) or true oscillator components (TOC). Plant Cell Physiol., 46, 677–685 (2005).
  • 88) McClung, C. R., Circadian rhythms in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 139–162 (2001).
  • 89) Eriksson, M. E., and Millar, A. J., The circadian clock: a plant’s best friend in a spinning world. Plant Physiol., 132, 732–738 (2003).
  • 90) Yanovsky, M., and Kay, S. A., Living by the calendar: how plants know when to flower. Nat. Rev. Mol. Cell Biol., 4, 265–276 (2003).
  • 91) Salome, P. A., and McClung, C. R., The Arabidopsis thaliana clock. J. Biol. Rhythms, 19, 425–435 (2004).
  • 92) Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., and Kay, S. A., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880–883 (2001).
  • 93) Mas, P., Alabadi, D., Yanovsky, M. J., Oyama, T., and Kay, S. A., Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell, 15, 223–236 (2003).
  • 94) Makino, S., Matsushika, A., Kojima, M., Oda, Y., and Mizuno, T., Light response of the circadian waves of the APRR1/TOC1 quintet: when does the quintet start singing rhythmically in Arabidopsis thaliana? Plant Cell Physiol., 42, 334–339 (2001).
  • 95) Strayer, C., Oyama, T., Schultz, T. F., Raman, R., Somers, D. E., Mas, P., Panda, S., Kreps, J. A., and Kay, S. A., Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 289, 768–771 (2000).
  • 96) Makino, S., Matsushika, A., Kojima, M., Yamashino, T., and Mizuno, T., The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana. I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol., 43, 58–69 (2002).
  • 97) Matsushika, A., Makino, S., Kojima, M., Yamashino, T., and Mizuno, T., The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana. II. Characterization with CCA1-overexpressing plants. Plant Cell Physiol., 43, 118–122 (2002).
  • 98) Murakami-Kojima, M., Nakamichi, N., Yamashino, T., and Mizuno, T., The APRR3 component of the clock-associated APRR1/TOC1 quintet is phosphorylated by a novel protein kinase belonging to the WNK family, the gene for which is also transcribed rhythmically in Arabidopsis thaliana. Plant Cell Physiol., 43, 675–683 (2002).
  • 99) Matsushika, A., Imamura, A., Yamashino, T., and Mizuno, T., Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. Plant Cell Physiol., 43, 833–843 (2002).
  • 100) Nakamichi, N., Murakami-Kojima, M., Sato, E., Kishi, Y., Yamashino, T., and Mizuno, T., Compilation and characterization of the novel WNK family of protein kinases in Arabiodpsis thaliana with special reference to circadian rhythms. Biosci. Biotechnol. Biochem., 66, 2429–2436 (2002).
  • 101) Nakamichi, N., Matsushika, A., Yamashino, T., and Mizuno, T., Cell autonomous circadian waves of the APRR1/TOC1 quintet in an established cell line of Arabidopsis thaliana. Plant Cell Physiol., 44, 360–365 (2003).
  • 102) Sato, E., Nakamichi, N., Yamashino, T., and Mizuno, T., Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis. Plant Cell Physiol., 43, 1374–1385 (2002).
  • 103) Yamashino, T., Matsushika, A., Fujimori, T., Sato, S., Kato, T., Tabata, S., and Mizuno, T., A link between circadian-controlled bHLH factors and the APRR/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol., 44, 619–629 (2003).
  • 104) Murakami, M., Ashikari, M., Miura, K., Yamashino, T., and Mizuno, T., The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol., 44, 1229–1236 (2003).
  • 105) Ito, S., Matsushika, A., Yamada, H., Sato, S., Kato, T., Tabata, S., Yamashino, T., and Mizuno, T., Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol., 44, 1237–1245 (2003).
  • 106) Nakamichi, N., Ito, S., Oyama, T., Yamashino, T., Kondo, T., and Mizuno, T., Characterization of plant circadian rhythms by employing Arabidopsis cultured cells with bioluminescence reporters. Plant Cell Physiol., 45, 57–67 (2004).
  • 107) Yamamoto, Y., Sato, E., Shimizu, T., Nakamichi, N., Sato, S., Kato, T., Tabata, S., Nagatani, A., Yamashino, T., and Mizuno, T., Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. Plant Cell Physiol., 44, 1119–1130 (2003).
  • 108) Murakami, M., Yamashino, T., and Mizuno, T., Characterization of circadian-associated APRR3 pseudo-response regulator belonging to the APRR/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol., 45, 645–650 (2004).
  • 109) Fujimori, T., Yamashino, T., Kato, T., and Mizuno, T., Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant Cell Physiol., 45, 1078–1086 (2004).
  • 110) Fujimori, T., Sato, E., Yamashino, T., and Mizuno, T., PRR5 (PSEUOD-RESPONSE REGULATOR5) plays antagonistic roles to CCA1 (CIRCADAIN CLOCK-ASSOCIATED1) in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 69, 426–430 (2005).
  • 111) Ito, S., Nakamichi, N., Matsushika, A., Fujimaro, T., Yamashino, T., and Mizuno, T., Molecular dissection of the promoter of the light-induced and circadian-controlled APRR9 gene encoding a clock-associated component of Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 69, 382–390 (2005).
  • 112) Murakami, M., Matsushika, A., Ashikari, M., Yamashino, T., and Mizuno, T., Circadian-associated rice pseudo-response regulators (OsPRRs): information on the control of flowering time. Biosci. Biotechnol. Biochem., 69, 410–414 (2005).
  • 113) Nakamichi, N., Kita, M., Ito, S., Sato, E., Yamashino, T., and Mizuno, T., The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol., 46, 609–619 (2005).
  • 114) Nakamichi, N., Kita, M., Ito, S., Yamashino, T., and Mizuno, T., PSEUDO-RESPONSE REGULATORS, PRR9, PRR7, AND PRR5, play together essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol., 46, 686–698 (2005).
  • 115) Eriksson, M. E., Hanano, S., Southern, M. M., Hall, A., and Millar, A. J., Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta, 218, 159–162 (2003).
  • 116) Kaczorowski, K. A., and Quail, P. H., Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock. Plant Cell, 15, 2654–2665 (2003).
  • 117) Michael, T. P., Salome, P. A., Yu, H. J., Spencer, T. R., Sharp, E. L., McPeek, M. A., Alonso, J. M., Echer, J. R., and McClung, C. R., Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science, 302, 1049–1053 (2003).
  • 118) Farre, E. M., Harmer, S. L., Harmon, F. G., Yanovsky, M. J., and Kay, S. A., Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol., 15, 47–54 (2005).
  • 119) Salome, P. A., and McClung, C. R., PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell, 17, 791–803 (2005).
  • 120) Salter, M., Franklin, K. A., and Whitelam, G. C., Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature, 426, 680–683 (2003).
  • 121) Asakura, Y., Hagino, T., Ohta, Y., Aoki, K., Yonekura-Sakakibara, K., Deji, A., Yamaya, T., Sugiyama, T., and Sakakibara, H., Molecular characterization of His–Asp phosphorelay signaling factors in maize leaves: implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. Plant Mol. Biol., 52, 331–341 (2003).
  • 122) Sakakibara, H., Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants. J. Plant Res., 116, 253–257 (2003).
  • 123) Yonekura-Sakakibara, K., Kojima, M., Yamaya, T., and Sakakibara, H., Molecular characterization of cytokinin-responsive histidine kinases in maize: differential ligand preferences and response to cis-zeatin. Plant Physiol., 134, 1654–1661 (2004).
  • 124) Sugawara, H., Kawano, Y., Hatakeyama, T., Yamaya, T., Kamiya, N., and Sakakibara, H., Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci., 14, 202–208 (2005).
  • 125) Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A., Hhd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev., 18, 926–936 (2004).
  • 126) Aoyama, K., Aiba, H., and Mizuno, T., Spy1, a histidine-containing phosphotransfer (HPt) signaling protein regulates fission yeast cell cycle through the Mcs4 response regulator. J. Bacteriol., 182, 4868–4874 (2000).
  • 127) Nakamichi, N., Yamada, H., Aoyama, K., Ohmiya, R., Aiba, H., and Mizuno, T., His-to-Asp phosphorelay circuitry regulates sexual development in Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem., 66, 2663–2672 (2002).
  • 128) Nakamichi, N., Yamada, H., Aiba, H., Aoyama, K., Ohmiya, R., and Mizuno, T., Characterization of the Prr1 response regulator with special reference to sexual development in Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem., 67, 547–555 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.