234
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

An Isolated Candida albicans TL3 Capable of Degrading Phenol at Large Concentration

, &
Pages 2358-2367 | Received 30 Jun 2005, Accepted 18 Sep 2005, Published online: 22 May 2014

  • 1) Swoboda-Colberg, N. G., Chemical contamination of the environment: sources, types, and fate of synthetic organic chemicals. In “Microbial Transformation and Degradation of Toxic Organic Chemicals”, eds. Young, L. Y., and Cerniglia, C. E., Wiley-Liss, Inc., U.S.A., pp. 27–74 (1995).
  • 2) Kobayashi, H., and Rittmann, B. E., Microbial removal of hazardous organic compounds. Environ. Sci. Technol., 16, 170–183 (1982).
  • 3) Margesin, R., Fonteyne, P. A., and Redl, B., Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol., 156, 68–75 (2005).
  • 4) Chen, W. M., Chang, J. S., Wu, C. H., and Chang, S. C., Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis. Res. Microbiol., 155, 672–680 (2004).
  • 5) El-Sayed, W. S., Ibrahim, M. K., Abu-Shady, M., El-Beih, F., Ohmura, N., Saiki, H., and Ando, A., Isolation and characterization of phenol-catabolizing bacteria from a coking plant. Biosci. Biotechnol. Biochem., 67, 2026–2029 (2003).
  • 6) Yap, L. F., Lee, Y. K., and Poh, C. L., Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Appl. Microbiol. Biotechnol., 51, 833–840 (1999).
  • 7) Rahalkar, S. B., Joshi, S. R., and Shivaraman, N., Photometabolism of aromatic compounds by Rhodopseudomonas palustris. Curr. Microbiol., 26, 1–9 (1993).
  • 8) Gurujeyalakshmi, G., and Oriel, P., Isolation of phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl. Environ. Microbiol., 55, 500–502 (1989).
  • 9) Antai, S. P., and Crawford, D. L., Degradation of phenol by Streptomyces setonii. Can. J. Microbiol., 29, 142–143 (1983).
  • 10) Hughes, E. J. L., and Bayly, R. C., Control of catechol meta-cleavage pathway in Alcaligenes eutrophus. J. Bacteriol., 154, 1363–1370 (1983).
  • 11) Bayly, R. C., and Wigmore, G. J., Metabolism of phenol and cresols by mutants of Pseudomonas putida. J. Bacteriol., 113, 1112–1120 (1973).
  • 12) Fewson, C. A., The identity of the gram-negative bacterium NCIB8250 (‘Vibrio 01’). J. Gen. Microbiol., 48, 107–110 (1967).
  • 13) Fialova, A., Boschke, E., and Bely, T., Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements. Int. Biodet. Biodegr., 54, 69–76 (2004).
  • 14) Santos, V. L., and Linardi, V. R., Phenol degradation by yeasts isolated from industrial effluents. J. Gen. Appl. Microbiol., 47, 213–221 (2001).
  • 15) Bastos, A. E. R., Tornisielo, V. L., Nozawa, S. R., Trevors, J. T., and Rossi, A., Phenol metabolism by two microorganisms isolated from Amazonian forest soil samples. J. Ind. Microbiol. Biotechnol., 24, 403–409 (2000).
  • 16) Cook, K. A., and Cain, R. B., Regulation of aromatic metabolism in the fungi: metabolic control of the 3-oxoadipate pathway in the yeast Rhodotorula mucilaginosa. J. Gen. Microbiol., 85, 37–50 (1974).
  • 17) Neujahr, H. Y., and Varga, J. M., Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur. J. Biochem., 13, 37–44 (1970).
  • 18) Semple, K. T., and Cain, R. B., Biodegradation of phenols by the alga Ochromonas danica. Appl. Environ. Microbiol., 62, 1265–1273 (1996).
  • 19) Ristanovic, B., Muntanjola-Cvetkovic, M., and Munjko, I., Phenol degrading fungi from South Adriatic Sea and Lake Skadar. Eur. J. Appl. Microbiol., 1, 313–322 (1975).
  • 20) Yang, R. D., and Humphrey, A. E., Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioeng., 17, 1211–1235 (1975).
  • 21) Neujahr, H. Y., and Gaal, A., phenol hydroxylase from yeast: purification and propcrties of the enzymes from Trichosporon cutancum. Eur. J. Biochem., 35, 386–400 (1973).
  • 22) Muller, R. H., and Babel, W., Phenol and its derivatives as heterotrophic substrates for microbial growth—an energetic comparison. Appl. Microbiol. Biotechnol., 42, 446–451 (1994).
  • 23) Sampaio, J. P., Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Can. J. Microbiol., 45, 491–512 (1999).
  • 24) Middelhoven, W. J., Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeast-like fungi. The literature review and in the experimental approach. Antonie Van Leeuwenhoek, 63, 125–144 (1993).
  • 25) Glancer-Soljan, M., Landeka Dragicevic, V. T., and Cacic, L., Aerobic degradation of formaldehyde in wastewater from the production of melamine resins. Food Technol. Biotechnol., 39, 197–202 (2001).
  • 26) Azachi, M., Henis, Y., Oren, A., Gurevich, P., and Sarig, S., Transformation of formaldehyde by a Halomonas sp. Can. J. Microbiol., 41, 548–552 (1995).
  • 27) Kato, N., Shirakawa, K., Kobayashi, H., and Sakazawa, C., The dismutation of aldehydes by a bacterial enzyme. Agric. Biol. Chem., 47, 39–46 (1983).
  • 28) Kato, N., Miyawak, N., and Sakazawa, C., Oxidation of formaldehyde by resistant yeasts Debaryomyces vanriji and Trichosporon penicillatum. Agric. Biol. Chem., 46, 655–661 (1982).
  • 29) Lacoste, R. J., Venable, S. H., and Stone, J. C., Modified 4-aminoantipyrene colorimetric method for phenols. Applications to an acrylic monomer. Anal. Chem., 31, 1246–1249 (1959).
  • 30) Nash, T., The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J., 55, 416–421 (1953).
  • 31) Folsom, B. R., Chapman, P. J., and Pritchard, P. H., Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interaction between substrates. Appl. Environ. Microbiol., 56, 1279–1285 (1990).
  • 32) Hayaishi, O., Katagiri, M., and Rothberg, S., Studies on oxygenases: pyrocatechase. J. Biol. Chem., 229, 905–920 (1957).
  • 33) Varga, J. M., and Neujahr, H. Y., Purification and properties of catechol-1,2-dioxygenase from Trichosporon cutaneum. Eur. J. Biochem., 12, 427–434 (1970).
  • 34) Sala-Trepat, J. M., and Evans, W. C., The meta-cleavage of catechol by Azotobacter species: 4-oxalocrotonate pathway. Eur. J. Biochem., 20, 400–413 (1971).
  • 35) Hirayama, K. K., Tobita, S., and Hirayama, K., Biodegradation of phenol and monochlorophenols by yeast Rhodotorula glutinis. Water Sci. Technol., 30, 59–66 (1994).
  • 36) Chang, S. Y., Li, C. T., Hiang, S. Y., and Chang, M. C., Intraspecific protoplast fusion of Candida tropicalis for enhancing phenol degradation. Appl. Microbiol. Biotechnol., 43, 534–538 (1995).
  • 37) Jeong, K. C., Jeong, E. Y., Hwang, T. E., and Cho, S. H., Identification and characterization of Acinetobacter sp. CNU961 able to grow with phenol at high concentrations. Biosci. Biotechnol. Biochem., 62, 1830–1833 (1998).
  • 38) Skoda, M., and Udaka, S., Preferential utilization of phenol rather than glucose by Trichosporon cutaneum possessing the partially constitutive catechol-1,2-dioxygenase. Appl. Environ. Microbiol., 39, 1129–1133 (1980).
  • 39) Hofmann, K. H., and Vogt, U., Induction of phenol assimilation in chemostat cultures of Candida maltosa L4. J. Basic. Microbiol., 27, 441–447 (1987).
  • 40) Gaal, A. H., and Neujahr, J., Induction of phenol-metabolizing enzymes in Trichosporon cutaneum. Arch. Microbiol., 130, 54–58 (1981).
  • 41) Futamata, H., Harayama, S., and Watanabe, K., Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl. Microbiol. Biotechnol., 55, 248–253 (2001).
  • 42) Chen, K. C., Lin, Y. H., Chen, W. H., and Liu, Y. C., Degradation of phenol by PPA-immobilized Candida tropicalis. Enzyme Microb. Technol., 31, 490–497 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.