76
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Probing the Secondary Structure of a Recombinant Neuronal Adaptor Protein and Its Phosphotyrosine Binding Domains

, , , , , & show all
Pages 2395-2400 | Received 20 Jul 2005, Accepted 08 Sep 2005, Published online: 22 May 2014

  • 1) Duilio, A., Zambrano, N., Mogavero, A. R., Ammendola, R., Cimino, F., and Russo, T., A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases. Nucl. Acids Res., 19, 5269–5274 (1991).
  • 2) Simeone, A., Duilio, A., Fiore, F., Acampora, D., De Felice, C., Faraonio, R., Paolocci, F., Cimino, F., and Russo, T., Expression of the neuron-specific FE65 gene marks the development of embryo ganglionic derivatives. Dev. Neurosci., 16, 53–60 (1994).
  • 3) Bimonte, M., Gianni, D., Allegra, D., Russo, T., and Zambrano, N., Mutation of the feh-1 gene, the Caenorhabditis elegans orthologue of mammalian Fe65, decreases the expression of two acetylcholinesterase genes. Eur. J. Neurosci., 20, 1483–1488 (2004).
  • 4) Ermekova, K.-S., Zambrano, N., Linn, H., Minopoli, G., Gerther, F., Russo, T., and Sudol, M., The WW domain of neural protein FE65 interacts with proline-rich motifs in mena, the mammalian homolog of Drosophila enabled. J. Biol. Chem., 272, 32869–32874 (1997).
  • 5) Zambrano, N., Bruni, P., Minopoli, G., Mosca, R., Molino, D., Russo, C., Schettini, G., Sudol, M., and Russo, T., The beta-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl protooncogene. J. Biol. Chem., 276, 19787–19792 (2001).
  • 6) Zambrano, N., Minopoli, G., De Candia, P., and Russo, T., The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J. Biol. Chem., 273, 20128–20133 (1998).
  • 7) Cao, X., and Sudhof, T. C., A transcriptely active complex of APP with Fe65 and histone acetyltransferase Tip60. Science, 293, 115–120 (2001).
  • 8) Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A., and Russo, T., The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J. Biol. Chem., 270, 30853–30856 (1995).
  • 9) Wolffe, A. P., Architectural regulations and Hmg1. Nat. Genet., 22, 215–217 (1999).
  • 10) Russo, T., Faraonio, R., Minopoli, G., De Candia, P., De Renzis, S., and Zambrano, N., Fe65 and the protein network centered around the cytosolic domain of the Alzheimer’s β-amyloid precursor protein. FEBS Lett., 434, 1–7 (1998).
  • 11) Selkoe, D. J., Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 369 (Suppl. 6738), A23–A31 (1999).
  • 12) Taizi, R. E., Kovacs, D. M., Kim, T. W., Mocz, R. D., Guenette, S. Y., and Wasco, M., The gene defects responsible for familial Alzheimer’s disease. Neurobiol Dis., 3, 159–168 (1996).
  • 13) Higgus, G. A., Rupniak, H. T., and Barnes, J. C., Apolipoprotein E and Alzeimer desease: a review of recent studies. Pharmacol. Biochem. Behav., 56, 675–685 (1997).
  • 14) Borg, J. P., Ooi, J., Levy, E., and Margolis, B., The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol., 16, 6229–6241 (1996).
  • 15) Homayouni, R., Rice, D. S., Sheldon, M., and Curran, T., Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci., 19, 7507–7515 (1999).
  • 16) Sabo, S. L., Lasker, L. M., Ikim, A. F., Khorkova, O., Sahasrabudhe, S., Greengard, P., and Bauxbam, J. D., Regulation β-amyloid secretion by Fe65, an amyloid precursor binding protein. J. Biol. Chem., 274, 7952–7957 (1999).
  • 17) Guenette, S. Y., Chen, J., Ferland, A., Haass, C., Capell, A., and Tanzi, R. E., hFE65L influences amyloid precursor protein maturation and secretion. J. Neurochem., 73, 985–993 (1999).
  • 18) Tomita, S., Ozaki, T., Taru, H., Oguchi, S., Takeda, S., Yagi, Y., Sakiyama, S., Kirino, Y., and Suzuki, T., Interaction of a neuron-specific protein containing PDZ domains with Alzheimer’s amyloid precursor protein. J. Biol. Chem., 274, 2243–2254 (1999).
  • 19) Borg, J. P., Yang, Y., De Taddéo-Borg, M., Margolis, B., and Scott Turner, R., The X11 protein slows cellular amyloid precursor protein processing and reduces A40 and A42 secretion. J. Biol. Chem., 273, 14761–14766 (1998).
  • 20) Sastre, M., Scott Turner, R., and Levy, E., X11 Interaction with β-Amyloid precursor protein modulates its cellular stabilization and reduces amyloid β-protein secretion. J. Biol. Chem., 273, 22351–22357 (1998).
  • 21) Maniatis, T., Sambrok, J., and Fritsh, E. F., Molecolar cloning: a laboratory manual II°, Cold Spring Harbor, New York (1989).
  • 22) Studier, F. W., Rosenberg, A. H., Henn, J. J., and Dubendorff, J. W., Use of T7 RNA polymerase to direct expression of cloned genes. Meth. Enz., 185, 60–89 (1990).
  • 23) Rudolph, R., and Lilie, H., In vitro folding of inclusion body proteins. FASEB J., 10, 49–56 (1996).
  • 24) Lowry, O. H., Rosebrough, N. J., Farr, A., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).
  • 25) Zambrano, N., Buxbaum, J. D., Minopoli, G., Fiore, F., De Candia, P., De Renzis, S., Faraonio, R., Sabo, S., Cheetham, J., Sudol, M., and Russo, T., Interaction of the phosphotyrosine interaction/phosphotyrosine binding-related domains of Fe65 with wild-type and mutant Alzheimer’s β-amyloid precursor proteins. J. Biol. Chem., 272, 6399–6405 (1997).
  • 26) Laemmli, U., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 27) Sreema, N., and Woody, R. W., A self-consistent method for the analysis of protein seconday structure from circular dichroism. Anal. Biochem., 209, 32–44 (1993).
  • 28) Gill, S. C., and von Hippel, P. H., Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem., 182, 319–326 (1989).
  • 29) Venyaminov, S. Y., and Yang, J. T., Determination of protein secondary structure. In “Circular Dichroism and the Conformational Analysis of Biomolecules”, ed. Fasman, G. D., Plenum Press, New York, pp. 69–107 (1996).
  • 30) Lobley, A., Whitmore, L., and Wallace, B. A., Dichroweb: an interactive website for the analysis of secondary structure from circular dichroism data. Bioinformatics, 18, 211–212 (2002).
  • 31) Zhang, Z., Lee, C. H., Mandiyan, V., Borg, J. P., Margolis, B., Schlessinger, J., and Kuriyan, J., Sequence-specific recognition of the internalization motif of the Alzeimer’s amyloid precursor protein by the X11 PTB domain. EMBO J., 16, 6141–6150 (1997).
  • 32) Zho, M. M., Ravichandran, K. S., Olejniczak, E. T., Petros, A. M., Meadows, R. P., Sattler, M., Harlan, J. E., Wade, W. S., Burakoff, S. J., and Fesik, S. W., Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature, 378, 584–592 (1995).
  • 33) Lakowicz, J. R., “Priciples of Fluorescence Spectroscopy”, Plenum Press, New York (1983).
  • 34) Neurath, H., The versatility of proteolytic enzymes. J. Cell. Biochem., 32, 35–49 (1986).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.