372
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of the Four Stereoisomers of 2,6-Dimethyloctane-1,8-dioic Acid, a Component of the Copulation Release Pheromone of the Cowpea Weevil, Callosobruchus maculatus

, , , , , , & show all
Pages 2401-2408 | Received 20 Jul 2005, Accepted 22 Aug 2005, Published online: 22 May 2014

  • 1) Tanaka, K., Ohsawa, K., Honda, H., and Yamamoto, I., Copulation release pheromone, erectin, from the azuki bean weevil (Callosobruchus chinensis L.). J. Pesticide Sci., 6, 75–82 (1981).
  • 2) Tanaka, K., Ohsawa, K., Honda, H., and Yamamoto, I., Synthesis of erectin, a copulation release pheromone of the azuki bean weevil, Callosobruchus chinensis L. J. Pesticide Sci., 7, 535–537 (1982).
  • 3) Kang, S.-K., and Lee, D.-H., A short synthesis of (±)-callosobruchusic acid, the copulation release pheromone (erectin) of the azuki bean weevil. Bull. Korean Chem. Soc., 8, 487–488 (1987).
  • 4) Mori, K., Ito, T., Tanaka, K., Honda, H., and Yamamoto, I., Synthesis and biological activity of optically active forms of (E)-3,7-dimethyl-2-octene-1,8-dioic acid (callosobruchusic acid). Tetrahedron, 39, 2303–2306 (1983).
  • 5) Gramatica, P., Gardina, G., Speranza, G., and Manitto, P., Bakers yeast hydrogenation of carbonyl activated double bonds: enantioselective synthesis of the (S)-form of the dihydroterpenediol secreted by Danaus chrysippus and of a pheromone of Callosobruchus chinensis L. Chem. Lett., 1395–1398 (1985).
  • 6) Giersch, W., and Schulte-Elte, K. H., A new access to both optical antipodes of natural (E)-3,7-dimethyloct-2-ene-1,8-diol and (E)-3,7-dimethyloct-2-ene-1,8-dicarboxylic acid. Helv. Chim. Acta, 73, 733–738 (1990).
  • 7) Abo, M., and Mori, K., Synthesis of (R)-callosobruchusic acid from methyl (R)-3-carboxybutanoate. Biosci. Biotechnol. Biochem., 57, 265–267 (1993).
  • 8) Rup, P. J., and Sharma, S. P., Behavioural response of males and females of Callosobruchus maculatus to sex pheromone. Indian J. Ecol., 5, 72–76 (1978).
  • 9) Qi, Y. T., and Burkholder, W. E., Sex pheromone biology and behavior of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). J. Chem. Ecol., 8, 527–534 (1982).
  • 10) Phillips, T. W., Phillips, J. K., Webster, F. X., Tang, R., and Burkholder, W. E., Identification of sex pheromones from cowpea weevil, Callosobruchus maculatus, and related studies with C. analis (Coleoptera: Bruchidae). J. Chem. Ecol., 22, 2233–2249 (1996).
  • 11) Akasaka, K., Ohrui, H., and Meguro, H., Determination of carboxylic acids by high-performance liquid chromatography with 2-(2,3-anthracenedicarboximido)ethyl trifluoromethanesulfonate as a highly sensitive fluorescent labelling reagent. Analyst, 118, 765–768 (1993).
  • 12) Akasaka, K., Ohrui, H., Meguro, H., and Umetsu, T., Highly sensitive isomeric determination of beraprost sodium in plasma using a fluorescent chiral derivatization reagent. Anal. Sci., 13, 461–466 (1997).
  • 13) Akasaka, K., Meguro, H., and Ohrui, H., Enantiomeric separation of carboxylic acids having chiral centers remote from the carboxyl group by labeling with a chiral fluorescent derivatization reagent. Tetrahedron Lett., 38, 6853–6856 (1997).
  • 14) Akasaka, K., Imaizumi, K., and Ohrui, H., Enantiomeric separation of branched fatty acids having chiral centers remote from the carboxyl group by labeling with chiral fluorescent derivatization reagents. Enantiomer, 3, 169–174 (1998).
  • 15) Akasaka, K., Imaizumi, K., and Ohrui, H., Enantiomeric separation of branched fatty acids having chiral centers remote from the carboxyl group by derivatization with chiral fluorescent-labeling reagents. Bunseki Kagaku, 48, 1085–1094 (1999).
  • 16) Akasaka, K., and Ohrui, H., Enantiomeric separation of branched fatty acids after conversion with trans-2-(2,3-anthracenedicarboximido)cyclohexanol, a highly sensitive chiral fluorescent conversion reagent. Biosci. Biotechnol. Biochem., 63, 1209–1215 (1999).
  • 17) Ohrui, H., Terashima, K., Imaizumi, K., and Akasaka, K., A solution of the “intrinsic problem” of diastereomer method in chiral discrimination: development of a method for highly efficient and sensitive discrimination of chiral alcohols. Proc. Japan Acad., 78 (Ser. B), 69–72 (2002).
  • 18) Imaizumi, K., Terashima, H., Akasaka, K., and Ohrui, H., Highly potent chiral labeling reagents for the discrimination of chiral alcohols. Anal. Sci., 19, 1243–1249 (2003).
  • 19) Umbreit, M. A., and Sharpless, K. B., Allylic oxidation of olefins by catalytic and stoichiometric selenium dioxide with tert-butyl hydroperoxide. J. Am. Chem. Soc., 99, 5526–5528 (1977).
  • 20) Evans, D. A., Ennis, M. D., and Mathre, D. J., Asymmetric alkylation reactions of chiral imide enolates: a practical approach to the enantioselective synthesis of α-substituted carboxylic acid derivatives. J. Am. Chem. Soc., 104, 1737–1739 (1982).
  • 21) Evans, D. A., and Weber, A. E., Asymmetric glycine enolate aldol reactions: synthesis of cyclosporin’s unusual amino acid, MeBmt. J. Am. Chem. Soc., 108, 6757–6761 (1986).
  • 22) Evans, D. A., and Weber, A. E., Synthesis of the cyclic hexapeptide echinocandin D: new approaches to the asymmetric synthesis of β-hydroxy α-amino acids. J. Am. Chem. Soc., 109, 7151–7157 (1987).
  • 23) Nemoto, H., Satoh, A., Fukumoto, K., and Kabuto, C., A rapid access to both enantiomers of 1,2,3,4-tetranor B-trienic 18,18,18-trifluorosteroids: the first enantiocontrolled total synthesis of 18,18,18-trifluorosteroids. J. Org. Chem., 60, 594–600 (1995).
  • 24) Wallach, D., Csendes, I. G., Burckhardt, P. E., Schmidlin, T., and Tamm, C., Synthesis of some building blocks for the construction of the macrocyclic moiety. Helv. Chim. Acta, 67, 1989–1997 (1984).
  • 25) Evans, D. A., Britton, T. C., Ellman, J. A., and Dorow, R. L., The asymmetric synthesis of α-amino acids: electrophilic azidation of chiral imide enolates, a practical approach to the synthesis of (R)- and (S)-α-azido carboxylic acids. J. Am. Chem. Soc., 112, 4011–4030 (1990).
  • 26) Kieboom, A. P. C., and van Rantwijk, E., “Hydrogenation and Hydrogenolysis in Synthetic Organic Chemistry”, Delft University Press, p. 41 (1977).
  • 27) Mori, K., Ohtaki, T., Ohrui, H., Berkebile, D. R., and Carlson, D. A., Synthesis of the four stereoisomers of 6-acetoxy-19-methylnonacosane, the most potent component of the female sex pheromone of the new world screwworm fly, with special emphasis on partial racemization in the course of catalytic hydrogenation. Eur. J. Org. Chem., 1089–1096 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.