437
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Superoxide Dismutase from the Silkworm, Bombyx mori: Sequence, Distribution, and Overexpression

, , , , , & show all
Pages 507-514 | Received 17 Sep 2004, Accepted 02 Dec 2004, Published online: 22 May 2014

  • 1) Davies, M. J., and Dean, R. T., “Radical-Mediated Protein Oxidation: From Chemistry to Medicine”, Oxford University Express (1997).
  • 2) Hermes-Lima, M., and Zenteno-Savín, T., Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 133, 537–556 (2002).
  • 3) Orr, W. C., and Sohal, R. S., Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science, 263, 1128–1130 (1994).
  • 4) Parkes, T. L., Hilliker, A. J., and Phillips, J. P., Motorneurons, reactive oxygen, and life span in Drosophila. Neurobiol. Aging, 20, 531–535 (1999).
  • 5) Kumar, S., Christophides, G. K., Cantera, R., Charles, B., Han, Y. S., Meister, S., Dimopoulos, G., Kafatos, F. C., and Barillas-Mury, C., The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A., 100, 14139–14144 (2003).
  • 6) Hao, Z., Kasumba, I., and Aksoy, S., Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). Insect Biochem. Molec. Biol., 33, 1155–1164 (2003).
  • 7) Suzuki, Y. J., Forman, H. J., and Sevanian, A., Oxidants as stimulators of signal transduction. Free Radic. Biol. Med., 22, 269–285 (1997).
  • 8) Sohal, R. S., Allen, R. G., Farmer, K. J., Newton, R. K., and Toy, P. L., Effects of exogenous antioxidants on the levels of endogenous antioxidants, lipid-soluble fluorescent material and life span in the housefly, Musca domestica. Mech. Aging Dev., 31, 329–336 (1985).
  • 9) McCord, J. M., and Fridovich, I., Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprin). J. Biol. Chem., 224, 6049–6055 (1969).
  • 10) Bannister, J. V., Bannister, W. H., and Rotilio, G., Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem., 22, 111–180 (1987).
  • 11) Fridovich, I., Superoxide dismutase. Ann. Rev. Biochem., 44, 147–159 (1975).
  • 12) Fridovich, I., Superoxide dismutase. Adv. Enzymol., 58, 61–97 (1986).
  • 13) Sohal, R. S., Agarwal, A., Agarwal, S., and Orr, W. C., Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem., 270, 15671–15674 (1995).
  • 14) Hallewell, R. A., Masiarz, F. R., Najarian, R. C., Puma, J. P., Quiroga, M. R., Randolph, A., Sanchez-Pescador, R., Scandella, C. J., Smith, B., and Steimer, K. S., Human Cu/Zn superoxide dismutase cDNA: Isolation of clones synthesizing high levels of active or inactive enzyme from an expression library. Nucleic Acids Res., 13, 2017–2034 (1985).
  • 15) Hartman, J. R., Geller, T., Yavin, Z., Bartfeld, D., Kanner, D., Aviv, H., and Gorecki, M., High-level expression of enzymatically active human Cu/Zn superoxide dismutase in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 83, 7142–7146 (1986).
  • 16) Bricker, B. J., Tabatabai, L. B., Judge, B. A., Deyoe, B. L., and Mayfield, J. E., Cloning, expression, and occurrence of the Brucella Cu, Zn superoxide dismutase. Infect. Immun., 58, 2935–2939 (1990).
  • 17) McRee, D. F., Redford, S. M., Getzoff, E. D., Lepock, J. R., Hallewell, R. A., and Tainer, J. A., Changes in crystallographic structure and thermostablility of a Cu, Zn superoxide dismutase mutant resulting from the removal of a buried cysteine. J. Biol. Chem., 265, 14234–14241 (1990).
  • 18) Hallewell, R. A., Imlay, K. C., Lee, P., Fong, N. M., Gallegos, C., Getzoff, E. D., Tainer, J. A., Cabelli, D. E., Tekamp-Olson, P., Mullenbach, G. T., and Cousens, L. S., Thermostabilization of recombinant human and bovine Cu, Zn superoxide dismutases by replacement of free cysteines. Biochem. Biophys. Res. Commun., 181, 474–480 (1991).
  • 19) Hong, Z., LoVerde, P. T., Hammarskjold, M. L., and Rekosh, D., Schistosoma mansoni: cloning of a complementary DNA encoding a cytosolic Cu/Zn superoxide dismutase and high-yield expression of the enzymatically active gene product in Escherichia coli. Exp. Parasitol., 75, 308–322 (1992).
  • 20) Yoo, H. Y., Kim, S. S., and Rho, H. M., Overexpression and simple purification of human superoxide dismutase (SOD1) in yeast and its resistance to oxidative stress. J. Biotechnol., 68, 29–35 (1999).
  • 21) Xiang, H., Wei, W. Z., Tan, H. R., and Guo, S. X., Cloning and expression of human Cu/Zn superoxide dismutase gene in Lactococcus lactis. Chin. J. Biotechnol., 16, 6–9 (2000).
  • 22) Mita, K., Morimyo, M., Okano, K., Koike, Y., Nohata, J., Kawasaki, H., Kadono-Okuda, K., Yamamoto, K., Suzuki, M. G., Shimada, T., Goldsmith, M. R., and Maeda, S., The construction of an EST database for Bombyx mori and its application. Proc. Natl. Acad. Sci. U.S.A., 100, 14121–14126 (2003).
  • 23) Ukeda, H., Kawana, D., Maeda, S., and Sawamura, M., Spectrophotometric assay for superoxide dismutase based on the deduction of highly water-soluble tetrazolium salts by xanthine–xanthine oxidase. Biosci. Biotechnol. Biochem., 63, 485–488 (1999).
  • 24) Beauchamp, C., and Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gel. Anal. Biochem., 44, 276–287 (1971).
  • 25) Davis, B. J., Disc electrophoresis. II. Method and application to human serum samples. Ann. N.Y. Acad. Sci., 121, 404–427 (1964).
  • 26) Laemmli, U. K., Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 27) Sohal, R. S., Arnold, L., and Orr, W. C., Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxidases, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster. Mech. Aging Dev., 56, 223–235 (1990).
  • 28) Ahmad, S., and Pardini, R. S., Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Radic. Biol. Med., 8, 401–413 (1990).
  • 29) Marklund, S. L., Extracellular superoxide dismutase and other superoxide dismutase isozymes in tissues from nine mammalian species. Biochem. J., 266, 213–219 (1984).
  • 30) Shin, S. W., Park, S., Park, D., Kim, M. G., Kim, S. C., Brey, P. T., and Park, H., Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based differential display and subtractive cloning. Insect Biochem. Molec. Biol., 28, 827–837 (1998).
  • 31) Duttaroy, A., Parkes, T., Emtage, P., Kirby, K., Boulianne, G. L., Wang, X., Hilliker, A. J., and Phillips, J. P., The manganese superoxide dismutase gene of Drosophila: Structure, expression, and evidence for regulation by MAP kinase. DNA Cell Biol., 16, 391–399 (1997).
  • 32) Hjalmarsson, K., Marklund, S. L., Engstrom, A., and Edlund, T., Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A., 84, 6340–6344 (1987).
  • 33) Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F., George, R. A., Lewis, S. E., Richards, S., Ashburner, M., Henderson, S. N., Sutton, G. G., Wortman, J. R., Yandell, M. D., Zhang, Q., Chen, L. X., Brandon, R. C., Rogers, Y. H., Blazej, R. G., Champe, M., Pfeiffer, B. D., Wan, K. H., Doyle, C., Baxter, E. G., Helt, G., Nelson, C. R., Gabor, G. L., Abril, J. F., Agbayani, A., An, H. J., Andrews-Pfannkoch, C., Baldwin, D., Ballew, R. M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E. M., Beeson, K. Y., Benos, P. V., Berman, B. P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M. R., Bouck, J., Brokstein, P., Brottier, P., Burtis, K. C., Busam, D. A., Butler, H., Cadieu, E., Center, A., Chandra, I., Cherry, J. M., Cawley, S., Dahlke, C., Davenport, L. B., Davies, P., de Pablos, B., Delcher, A., Deng, Z., Mays, A. D., Dew, I., Dietz, S. M., Dodson, K., Doup, L. E., Downes, M., Dugan-Rocha, S., Dunkov, B. C., Dunn, P., Durbin, K. J., Evangelista, C. C., Ferraz, C., Ferriera, S., Fleischmann, W., Fosler, C., Gabrielian, A. E., Garg, N. S., Gelbart, W. M., Glasser, K., Glodek, A., Gong, F., Gorrell, J. H., Gu, Z., Guan, P., Harris, M., Harris, N. L., Harvey, D., Heiman, T. J., Hernandez, J. R., Houck, J., Hostin, D., Houston, K. A., Howland, T. J., Wei, M. H., Ibegwam, C., Jalali, M., Kalush, F., Karpen, G. H., Ke, Z., Kennison, J. A., Ketchum, K. A., Kimmel, B. E., Kodira, C. D., Kraft, C., Kravitz, S., Kulp, D., Lai, Z., Lasko, P., Lei, Y., Levitsky, A. A., Li, J., Li, Z., Liang, Y., Lin, X., Liu, X., Mattei, B., McIntosh, T. C., McLeod, M. P., McPherson, D., Merkulov, G., Milshina, N. V., Mobarry, C., Morris, J., Moshrefi, A., Mount, S. M., Moy, M., Murphy, B., Murphy, L., Muzny, D. M., Nelson, D. L., Nelson, D. R., Nelson, K. A., Nixon, K., Nusskern, D. R., Pacleb, J. M., Palazzolo, M., Pittman, G. S., Pan, S., Pollard, J., Puri, V., Reese, M. G., Reinert, K., Remington, K., Saunders, R. D., Scheeler, F., Shen, H., Shue, B. C., Siden-Kiamos, I., Simpson, M., Skupski, M. P., Smith, T., Spier, E., Spradling, A. C., Stapleton, M., Strong, R., Sun, E., Svirskas, R., Tector, C., Turner, R., Venter, E., Wang, A. H., Wang, X., Wang, Z. Y., Wassarman, D. A., Weinstock, G. M., Weissenbach, J., Williams, S. M., Woodage, T., Worley, K. C., Wu, D., Yang, S., Yao, Q. A., Ye, J., Yeh, R. F., Zaveri, J. S., Zhan, M., Zhang, G., Zhao, Q., Zheng, L., Zheng, X. H., Zhong, F. N., Zhong, W., Zhou, X., Zhu, S., Zhu, X., Smith, H. O., Gibbs, R. A., Myers, E. W., Rubin, G. M., and Venter, J. C., The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195 (2000).
  • 34) Hassan, H. M., and Fridovich, I., Regulation of the synthesis of superoxide dismutase in Escherichia coli. Induction by methyl viologen. J. Biol. Chem., 252, 7667–7672 (1977).
  • 35) Hassan, H. M., and Fridovich, I., Superoxide radical and the oxygen enhancement of the toxicity of paraquat in Escherichia coli. J. Biol. Chem., 253, 8143–8148 (1978).
  • 36) Sun, A. Y., and Chen, Y. M., Oxidative stress and neurodegenerative disorders. J. Biomed. Sci., 5, 401–414 (1998).
  • 37) Chan, A. C., Chow, C. K., and Chiu, D., Interaction of antioxidants and their implication in genetic anemia. Proc. Soc. Exp. Biol. Med., 222, 274–282 (1999).
  • 38) Bouzyk, E., Gradzka, I., Iwanenko, T., Kruszewski, M., Sochanowicz, B., and Szumiel, I., The response of L5178Y lymphoma sublines to oxidative stress: Antioxidant defense, iron content and nuclear translocation of the p65 subunit of NF-κB. Acta Biochem. Pol., 47, 881–888 (2000).
  • 39) Roe, J. A., Butler, A., Scholler, D. M., Valentine, J. S., Marky, L., and Breslauer, K. J., Differential scanning calorimetry of Cu, Zn-superoxide dismutase, the apoprotein, and its zinc-substituted derivatives. Biochemistry, 27, 950–958 (1988).
  • 40) Liu, W., Zhu, R., Li, G., and Wang, D., cDNA cloning, high-level expression, purification, and characterization of an avian Cu, Zn superoxide dismutase from Peking duck. Protein Expr. Purif., 25, 379–388 (2002).
  • 41) Bonaccorsi di Patti, M. C., Carri, M. T., Gabbianelli, R., Da Gai, R., Volpe, C., Giartosio, A., Rotilio, G., and Battistoni, A., A free cysteine residue at the dimer interface decreases conformational stability of Xenopus laevis copper, zinc superoxide dismutase. Arch. Biochem. Biophys., 377, 284–289 (2000).
  • 42) Ozturk-Urek, R., and Tarhan, L., Purification and characterization of superoxide dismutase from chicken liver. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 128, 205–212 (2001).
  • 43) O’Neill, P., Davies, S., Fielden, E. M., Calabrese, L., Capo, C., Marmocchi, F., Natoli, G., and Rotilio, G., The effects of pH and various salts upon the activity of a series of superoxide dismutases. Biochem. J., 251, 41–46 (1988).
  • 44) Polticelli, F., Battistoni, A., O’Neill, P., Rotilio, G., and Desideri, A., Identification of the residues responsible for the alkaline inhibition of Cu, Zn superoxide dismutase: A site-directed mutagenesis approach. Protein Sci., 5, 248–253 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.